
Shuai Wang, Xinyu Lian, Darko Marinov, Tianyin Xu

ICSE, Melbourne, Australia
05/18/2023

Test Selection for Unified 
Regression Testing

1



Code bugs and misconfigurations are two dominating 
root causes of software failures

2



Code bugs and misconfigurations are two dominating 
root causes of software failures

2



Code bugs and misconfigurations are two dominating 
root causes of software failures

2



Code bugs and misconfigurations are two dominating 
root causes of software failures

2



Code bugs and misconfigurations are two dominating 
root causes of software failures

2



Code bugs and misconfigurations are two dominating 
root causes of software failures

2



Regression testing for code changes
• Checking that code changes do not break working functionality
• Widely used in modern CI/CD environments

3



Regression testing for code changes
• Checking that code changes do not break working functionality
• Widely used in modern CI/CD environments

t1

code changes
original revision modified revision

t2
t3
…
tn

t1'
t2'
t3'
…
tn'

Av
ai

la
bl

e 
te

st
s

3



Regression testing for code changes
• Checking that code changes do not break working functionality
• Widely used in modern CI/CD environments

t1

code changes
original revision modified revision

t2
t3
…
tn

t1'
t2'
t3'
…
tn'

Av
ai

la
bl

e 
te

st
s

3

• Mostly testing code under default configuration



Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

4
[1] Xudong Sun, et.al. Testing Configuration Changes in Context to Prevent Production Failures. OSDI 2020



Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

public void testGetMasterInfoPort() {...}
@Test @Ctest

max = conf.getInt(“hbase.http.max.threads”); 

Configuration test

4
[1] Xudong Sun, et.al. Testing Configuration Changes in Context to Prevent Production Failures. OSDI 2020



Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

Production Config change (for @Ctest)
- hbase.http.max.threads = 10 
+ hbase.http.max.threads = 5

public void testGetMasterInfoPort() {...}
@Test @Ctest

max = conf.getInt(“hbase.http.max.threads”); 

Configuration test

4
[1] Xudong Sun, et.al. Testing Configuration Changes in Context to Prevent Production Failures. OSDI 2020



Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

protected void doStart() {
 if (needed > max)

throw new IllegalStateException(String.format(
“Insufficient threads...”));

} 

...

Production Config change (for @Ctest)
- hbase.http.max.threads = 10 
+ hbase.http.max.threads = 5

Source code

public void testGetMasterInfoPort() {...}
@Test @Ctest

max = conf.getInt(“hbase.http.max.threads”); 

Configuration test

4
[1] Xudong Sun, et.al. Testing Configuration Changes in Context to Prevent Production Failures. OSDI 2020



Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

protected void doStart() {
 if (needed > max)

throw new IllegalStateException(String.format(
“Insufficient threads...”));

} 

...

Production Config change (for @Ctest)
- hbase.http.max.threads = 10 
+ hbase.http.max.threads = 5

Source code

public void testGetMasterInfoPort() {...}
@Test @Ctest

max = conf.getInt(“hbase.http.max.threads”); 

Configuration test

4

Existing configuration testing techniques 
cannot address source-code changes.

[1] Xudong Sun, et.al. Testing Configuration Changes in Context to Prevent Production Failures. OSDI 2020



The need for a unified testing technique
• Code and configuration are constantly changed together
• Existing testing techniques test code and configuration separately
• Cannot address co-evolution of code and configurations
• Cannot catch defects due to inconsistent code and configuration changes

5



The need for a unified testing technique
• Code and configuration are constantly changed together
• Existing testing techniques test code and configuration separately
• Cannot address co-evolution of code and configurations
• Cannot catch defects due to inconsistent code and configuration changes

5



The need for a unified testing technique
• Code and configuration are constantly changed together
• Existing testing techniques test code and configuration separately
• Cannot address co-evolution of code and configurations
• Cannot catch defects due to inconsistent code and configuration changes

5



The need for a unified testing technique
• Code and configuration are constantly changed together
• Existing testing techniques test code and configuration separately
• Cannot address co-evolution of code and configurations
• Cannot catch defects due to inconsistent code and configuration changes

5



Contributions
• Concept: Unified Regression Testing (URT) for checking 

both code and configuration changes

• Algorithm: Unified Regression Test Selection (uRTS) for 
speeding up URT, with the same safety guarantee

• Implementation: Implemented on top of Ekstazi and OpenCtest

• Evaluation with five large software projects
• Hundreds of code revisions and dozens of configuration files
• Largest RTS experiments performed on open-source projects

• Data/code release: https://github.com/xlab-uiuc/uRTS-ae
6

https://github.com/xlab-uiuc/uRTS-ae


Unified regression testing is costly
• URT generalizes traditional regression testing and config testing

• Testing   changes under not only default    but also production  

• Testing    changes against the new 

• Handling diffs that co-change both    and 

• May run each change multiple times under different 
• Existing regression testing (on default config) is already expensive!

7

Source code

Configuration



uRTS to the rescue

8

• Minimizing the number of tests to run for a given diff
• Could change code only, config only, or both code and config



uRTS to the rescue

8

• Minimizing the number of tests to run for a given diff
• Could change code only, config only, or both code and config

Change Regular Test Config Test

Only code change Run Run

Only default config Run Skip

Only production config Skip Run

Code + default config Run Run

Code + production config Run Run

Code + default and prod config Run Run



uRTS to the rescue

8

• Minimizing the number of tests to run for a given diff
• Could change code only, config only, or both code and config

• Key observation -- changes are typically small
• A diff changes a small piece of code, or a small number of config values
• A production config changes only a small number of default config values
• The production configs only differ in a small number of values



Traditional RTS

9



Traditional RTS
Analysis Execution Collection

9



Traditional RTS

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Code
Changes

Execution CollectionInputs

9



Traditional RTS

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Code
Changes

Execution CollectionInputs

9



v

Traditional RTS

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Code
Changes

Test Runner

Execution Collection

Se
le

ct
ed

Inputs

9



v

Traditional RTS

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Code
Changes

Test Runner

Execution Collection

Dependency
Regenerate

Se
le

ct
ed

Inputs

9



v

Traditional RTS

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Code
Changes

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Se
le

ct
ed

Sk
ip

pe
d

Inputs

9



v

Traditional RTS

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Code
Changes

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Code Dependency 
Files

Se
le

ct
ed

Sk
ip

pe
d

Stored for the next round selection

Inputs

9



v

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Code
Changes

Config

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Code Dependency 
Files

Se
le

ct
ed

Sk
ip

pe
d

Stored for the next round selection

Inputs

9

uRTS Implementation

Green color represents the changes in uRTS compared with traditional RTS



v

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Config

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Code Dependency 
Files

Se
le

ct
ed

Sk
ip

pe
d

Stored for the next round selection

Inputs

9

uRTS Implementation

Green color represents the changes in uRTS compared with traditional RTS



v

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Config

Config
Changes

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Code Dependency 
Files

Se
le

ct
ed

Sk
ip

pe
d

Stored for the next round selection

Inputs

Code
Changes

9

uRTS Implementation

Green color represents the changes in uRTS compared with traditional RTS



v

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Config

Config
Changes

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Code Dependency 
Files

Se
le

ct
ed

Sk
ip

pe
d

Stored for the next round selection

Inputs

Code
Changes

9

uRTS Implementation

Green color represents the changes in uRTS compared with traditional RTS



v

Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Config

Config
Changes

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Code Dependency 
Files

Se
le

ct
ed

Sk
ip

pe
d

Stored for the next round selection

2D-
Comparison

Inputs

Find Config 
Dep.

Code
Changes

9

uRTS Implementation

Green color represents the changes in uRTS compared with traditional RTS



Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Config

Config
Changes

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Code Dependency 
Files

Se
le

ct
ed

Sk
ip

pe
d

Stored for the next round selection

2D-
Comparison

v

Ctest Runner

Inputs

Find Config 
Dep.

Code
Changes

9

uRTS Implementation

Green color represents the changes in uRTS compared with traditional RTS



Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Config

Config
Changes

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Code Dependency 
Files

Se
le

ct
ed

Sk
ip

pe
d

Stored for the next round selection

2D-
Comparison

v

Ctest Runner

Inputs

Find Config 
Dep.

Code
Changes

Dependency
Regenerate

Dependency
Reuse

9

uRTS Implementation

Green color represents the changes in uRTS compared with traditional RTS



Tests

Code
Find Code 

Dep.

Compare Dep. 
With Previous

Analysis

Config

Config
Changes

Test Runner

Execution Collection

Dependency
Regenerate

Dependency
Reuse

Code Dependency 
Files

Se
le

ct
ed

Sk
ip

pe
d

Stored for the next round selection

2D-
Comparison

v

Ctest Runner

Code and Config 
Dependency Files

Inputs

Find Config 
Dep.

Code
Changes

Dependency
Regenerate

Dependency
Reuse

9

uRTS Implementation

Green color represents the changes in uRTS compared with traditional RTS



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies Configuration dependencies



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies

T1

T2

T3

T4

Configuration dependencies



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies

A

B

C

D

E

T1

T2

T3

T4

Configuration dependencies



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies

A

B

C

D

E

T1

T2

T3

T4

Configuration dependencies



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies

A

B

C

D

E

T1

T2

T3

T4

Configuration dependencies

C



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies

A

B

C

D

E

T1

T2

T3

T4

Configuration dependencies

C

T1

T2

T4



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies

A

B

C

D

E

T1

T2

T3

T4

Configuration dependencies

P3

P1

P2

P4

C

T1

T2

T4



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies

A

B

C

D

E

T1

T2

T3

T4

Configuration dependencies

P3

P1

P2

P4

C

T1

T2

T4



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies

A

B

C

D

E

T1

T2

T3

T4

Configuration dependencies

P3

P1

P2

P4

C

P2

T1

T2

T4



uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.

10Code dependencies

A

B

C

D

E

T1

T2

T3

T4

Configuration dependencies

P3

P1

P2

P4

C

P2

T1

T2

T3

T1

T2

T4



2D comparison for Ctest selection
• Goal: select as few tests as possible while keeping safety



2D comparison for Ctest selection

𝒄𝒕 #𝑷 A configuration test ct parameterized by a set of configuration parameter !𝑷

• Goal: select as few tests as possible while keeping safety



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷
𝑺′𝒄𝒕 𝑪′𝟐

$%



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷
𝑺′𝒄𝒕 𝑪′𝟐

$%

Code dependency for 𝑐𝑡 #𝑃  
under code revision S’ 

Config dependency for 𝑐𝑡 #𝑃  
with config set #𝑃 ⊆	𝐶′!



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷
𝑺′𝒄𝒕 𝑪′𝟐

$%



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷

Old

𝑺′𝒄𝒕 𝑪′𝟐
$%



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷

Old

𝑪𝒅𝒆𝒇 𝑪𝟏 𝑪𝟐New 𝑺

𝑺′𝒄𝒕 𝑪′𝟐
$%



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷

Old

𝑪𝒅𝒆𝒇 𝑪𝟏 𝑪𝟐New 𝑺
𝑺𝑪𝟐
𝒄𝒕 𝑪𝟐

$%

𝑺′𝒄𝒕 𝑪′𝟐
$%



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷

Old

𝑪𝒅𝒆𝒇 𝑪𝟏 𝑪𝟐

Vertical
comparison
of code and 

configurationNew 𝑺
𝑺𝑪𝟐
𝒄𝒕 𝑪𝟐

$%

𝑺′𝒄𝒕 𝑪′𝟐
$%



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷

Old

𝑪𝒅𝒆𝒇 𝑪𝟏 𝑪𝟐

Vertical
comparison
of code and 

configuration

𝑺𝑪𝒅𝒆𝒇
𝒕

New 𝑺
𝑪𝒅𝒆𝒇𝑷 𝑺𝑪𝟏

𝒄𝒕 𝑪𝟏
$% 𝑺𝑪𝟐

𝒄𝒕 𝑪𝟐
$%

𝑺′𝒄𝒕 𝑪′𝟐
$%



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷

Old

𝑪𝒅𝒆𝒇 𝑪𝟏 𝑪𝟐

Vertical
comparison
of code and 

configuration

Horizonal comparison
Only configuration (not code)

𝑺𝑪𝒅𝒆𝒇
𝒕

New 𝑺
𝑪𝒅𝒆𝒇𝑷 𝑺𝑪𝟏

𝒄𝒕 𝑪𝟏
$% 𝑺𝑪𝟐

𝒄𝒕 𝑪𝟐
$%

𝑺′𝒄𝒕 𝑪′𝟐
$%



2D comparison for Ctest selection

𝑺′ 𝑪′𝒅𝒆𝒇 𝑪′𝟏 𝑪′𝟐

Code Production configsDefault config

𝒄𝒕 #𝑷

Old

𝑪𝒅𝒆𝒇 𝑪𝟏 𝑪𝟐

Vertical
comparison
of code and 

configuration

Horizonal comparison
Only configuration (not code)

𝑺𝑪𝒅𝒆𝒇
𝒕

New 𝑺
𝑪𝒅𝒆𝒇𝑷 𝑺𝑪𝟏

𝒄𝒕 𝑪𝟏
$% 𝑺𝑪𝟐

𝒄𝒕 𝑪𝟐
$%

𝑺′𝒄𝒕 𝑪′𝟐
$%

Not select if either vertical or 
horizontal doesn’t change



Main Results
• Evaluated uRTS with 5 popular large, widely used open-source projects,

250 code revisions and 100 config changes

• Can uRTS effectively reduce the test overhead?
• Reduce end-to-end timing by 3.64X and 1.87X over ReTestAll and safe-Ekastazi
• Reduce number of tests by 8.92X and 2.29X over ReTestAll and safe-Ekastazi

• What is the overhead of URT with uRTS?
• Take 1.93X on end-to-end timing over unsafe-Ekastazi on three configurations

12



Main Results
• Evaluated uRTS with 5 popular large, widely used open-source projects,

250 code revisions and 100 config changes

• Can uRTS effectively reduce the test overhead?
• Reduce end-to-end timing by 3.64X and 1.87X over ReTestAll and safe Ekastazi
• Reduce number of tests by 8.92X and 2.29X over ReTestAll and safe Ekastazi

• What is the overhead of uRTS?
• Take 1.93X on end-to-end timing over unsafe Ekastazi on three configurations

13



Conclusion
• Concept: Unified Regression Testing (URT) for checking 

both code and configuration changes

• Algorithm: Unified Regression Test Selection (uRTS) for 
speeding up URT, with the same safety guarantee

• Implementation: Implemented on top of Ekstazi and OpenCtest

• Evaluation with five large software projects
• Hundreds of code revisions and dozens of configuration files
• Largest RTS experiments performed on open-source projects

• Data/code release: https://github.com/xlab-uiuc/uRTS-ae
14

https://github.com/xlab-uiuc/uRTS-ae

