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Code bugs and misconfigurations are two dominating 
root causes of software failures
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Regression testing for code changes
• Checking that code changes do not break working functionality
• Widely used in modern CI/CD environments
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• Mostly testing code under default configuration



Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

4
[1] Xudong Sun, et.al. Testing Configuration Changes in Context to Prevent Production Failures. OSDI 2020



Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

public void testGetMasterInfoPort() {...}
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max = conf.getInt(“hbase.http.max.threads”); 
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Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

Production Config change (for @Ctest)
- hbase.http.max.threads = 10 
+ hbase.http.max.threads = 5
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Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

protected void doStart() {
 if (needed > max)

throw new IllegalStateException(String.format(
“Insufficient threads...”));

} 

...

Production Config change (for @Ctest)
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Source code

public void testGetMasterInfoPort() {...}
@Test @Ctest
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Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

protected void doStart() {
 if (needed > max)

throw new IllegalStateException(String.format(
“Insufficient threads...”));

} 

...

Production Config change (for @Ctest)
- hbase.http.max.threads = 10 
+ hbase.http.max.threads = 5
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public void testGetMasterInfoPort() {...}
@Test @Ctest

max = conf.getInt(“hbase.http.max.threads”); 

Configuration test
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Existing configuration testing techniques 
cannot address source-code changes.

[1] Xudong Sun, et.al. Testing Configuration Changes in Context to Prevent Production Failures. OSDI 2020



The need for a unified testing technique
• Code and configuration are constantly changed together
• Existing testing techniques test code and configuration separately
• Cannot address co-evolution of code and configurations
• Cannot catch defects due to inconsistent code and configuration changes
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Contributions
• Concept: Unified Regression Testing (URT) for checking 

both code and configuration changes

• Algorithm: Unified Regression Test Selection (uRTS) for 
speeding up URT, with the same safety guarantee

• Implementation: Implemented on top of Ekstazi and OpenCtest

• Evaluation with five large software projects
• Hundreds of code revisions and dozens of configuration files
• Largest RTS experiments performed on open-source projects

• Data/code release: https://github.com/xlab-uiuc/uRTS-ae
6

https://github.com/xlab-uiuc/uRTS-ae


Unified regression testing is costly
• URT generalizes traditional regression testing and config testing

• Testing   changes under not only default    but also production  

• Testing    changes against the new 

• Handling diffs that co-change both    and 

• May run each change multiple times under different 
• Existing regression testing (on default config) is already expensive!

7

Source code

Configuration



uRTS to the rescue
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uRTS to the rescue
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• Minimizing the number of tests to run for a given diff
• Could change code only, config only, or both code and config

Change Regular Test Config Test

Only code change Run Run

Only default config Run Skip

Only production config Skip Run

Code + default config Run Run

Code + production config Run Run

Code + default and prod config Run Run



uRTS to the rescue
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• Minimizing the number of tests to run for a given diff
• Could change code only, config only, or both code and config

• Key observation -- changes are typically small
• A diff changes a small piece of code, or a small number of config values
• A production config changes only a small number of default config values
• The production configs only differ in a small number of values



Traditional RTS
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uRTS tracks code and config dependencies
• Dependencies are entities that can affect test behavior.
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2D comparison for Ctest selection
• Goal: select as few tests as possible while keeping safety



2D comparison for Ctest selection

𝒄𝒕 #𝑷 A configuration test ct parameterized by a set of configuration parameter !𝑷

• Goal: select as few tests as possible while keeping safety
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Main Results
• Evaluated uRTS with 5 popular large, widely used open-source projects,

250 code revisions and 100 config changes

• Can uRTS effectively reduce the test overhead?
• Reduce end-to-end timing by 3.64X and 1.87X over ReTestAll and safe-Ekastazi
• Reduce number of tests by 8.92X and 2.29X over ReTestAll and safe-Ekastazi

• What is the overhead of URT with uRTS?
• Take 1.93X on end-to-end timing over unsafe-Ekastazi on three configurations
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Conclusion
• Concept: Unified Regression Testing (URT) for checking 

both code and configuration changes

• Algorithm: Unified Regression Test Selection (uRTS) for 
speeding up URT, with the same safety guarantee

• Implementation: Implemented on top of Ekstazi and OpenCtest

• Evaluation with five large software projects
• Hundreds of code revisions and dozens of configuration files
• Largest RTS experiments performed on open-source projects

• Data/code release: https://github.com/xlab-uiuc/uRTS-ae
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