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Regression testing for code changes

 Checking that code changes do not break working functionality
* Widely used in modern CI/CD environments

Tests

Tm T3 detected bug

Finding failures takes time!

Change 2
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Information Retrieval-based TCP

e Information Retrieval (IR)
« Rank tests based on the relevance to code changes

Ranked
Tests

1. T3
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Learning-based TCP

 Learning-to-Rank (LTR):
» Use supervised learning algorithms
 Train on historical test runs to predict ranking of tests for future runs

« Ranking-to-Learn (RTL):
* Use reinforcement learning algorithms
 Continuously rank tests based on test states of the current run
 Receive feedback from the ranking to improve its policy for next run



How to prioritize tests?

* Time-based TCP:

* Prioritize tests that run faster

Which TCP should I use?

* Prioritize tests that are more relevant to changes by textual similarity

 Learning-based TCP:
« Use ML algorithms to predict the ranking of tests

« Hybrid TCP:

* Combine heuristics from previous categories
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* Prior datasets for TCP are rather limited
 Consist of short-running test suites, e.g., runs for several minutes
« Some from proprietary projects, e.g., test results of Google products
e Outdated CI builds, e.g., >10-year-old builds in TravisTorrent [1]

* TCP is most useful on long-running test suites
» More tests, more complex tests
- SAVE MORE TIME!
- Harder to find and prioritize failing tests
* On the contrary, TCP provides little value on short-running test suites

« Will the same TCP techniques remain the most effective on
long-running test suites?



Contributions

 Dataset: An extensive dataset focused on recent (2020-2023)
long-running test suites (LRTS) that consists of 21K CI
builds with 57K test-suite runs from 10 open-source projects

* LRTS currently has 100K+ test-suite runs (an additional 43K+ test-
suite runs since this ISSTA paper was accepted)

- Extensive Study: Evaluated 59 previously proposed TCP
techniques on LRTS

* Findings: Revisited 11 key findings from recent TCP studies,
confirming 9 and refuting 2 findings; presented 3 new findings

15
- "l.!'.i' =

 Data/code release: QR code:
https://github.com/Irtsuser/LRTS
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LRTS Dataset

» Identify 10 Apache software projects that hosted long-running CI
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LRTS Dataset

» Identify 10 Apache software projects that hosted long-running CI

e.g., failure of flaky tests and frequently failing tests

We need: Tests Code Diffs Test Failures‘/Test Times
4
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More details in paper 11
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LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

* Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]
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LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

* Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

« Large-scale: 21,255 unique CI builds from 10 projects, 57,437
test-suite runs and 30,118 (59%) had at least one failed test

* Diverse test failures: 75% of the failed tests failed < 8 times
 Scripts: We also released code to build and update LRTS
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e Evaluation Metrics:
» Average Percentage Faults Detected (APFD):

« Average Percentage Faults Detected per Cost (APFDc)
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Evaluation setup

e Evaluation Metrics:
» Average Percentage Faults Detected (APFD):
m TF, 1

(et L
nxm 2n

« Average Percentage Faults Detected per Cost (APFDc)

1
i=1(Xj=rF, t; —5trF;)
ot xm

* No direct mapping of test failures to faults:
 FFMaps: assumes all failures map to the same fault
 FFMapy: assumes each failure maps to a unique fault
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Evaluation setup More details :ilbout ’fhe studied
TCP techniques in paper

 Study 26 basic TCP techniques:
« 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL
« Random as baseline

» Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques
 Cost-cognizant (CC): prioritize tests with a short execution time
 Cost-history-cognizant (CCH): prioritize tests that failed more often

* 3 LRTS versions:
« LRTS-All: Keeps all test failures
« LRTS-DeConf: Omits identified confounding test failures
« LRTS-FirstFail: Only keeps the first failure of each non-flaky test
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Evaluating TCP techniques on LRTS

« RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

« RQ2: How do confounding test failures impact TCP effectiveness?
(1 confirmation and 2 new findings)

* RQ3: How do TCP techniques perform in detecting the first failure
throughout CI history for each failed test? (1 new finding)

» RQ1 - LRTS-DeConf; RQ2 - LRTS-All; RQ3 - LRTS-FirstFail

15
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Confirmations are colored green; refutations red; new findings purple
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* Confirmed 8 and refuted 2 prior findings, e.g.,
» Simpler TCPs (time-based, history-based) outperform
sophisticated ones (IR-based, ML/RL-based) [3, 9]
 Cost-cognizant hybrids substantially improve basic TCPs [3]
 Prioritizing faster tests that failed recently is the best [3]
» IR-based TCP performed worse when test suites have more
failures or longer-running tests [3]
* Different configurations have little impact on the
effectiveness of IR-based techniques [3, 8]

Confirmations are colored green; refutations red; new findings purple
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RQ2: Impact* of confounding test failures (CTF)

» CTF: failures of flaky tests and frequently failing tests
* CTF should NOT be prioritized over other failures

« Confirmed 1 prior finding and present 2 new findings,
 History-based TCP are the most negatively impacted® by CTF [7],
but those favoring recent history are resilient to CTF
» Time-based and change-aware (IR-based) TCP are the least
impacted by CTF

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over

non-CTFs that are true failures.
17
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RQ3: TCP Effectiveness on finding first failures

e First failure of a test: the first time a test failed in CI

* Goal: understand how TCP perform when most tests do
not fail

* Presented 1 new finding, i.e.,
» Time-based and change-aware TCP are more effective
in finding first failures, then Random, then history-

based TCP

18



Conclusions

« Dataset: An extensive dataset focused on recent (2020-2023) long-running
test suites (LRTS) that consists of 21K CI builds with 57K test-suite runs
from 10 open-source projects

* LRTS currently has 100K+ test-suite runs (an additional 43K+ test-suite
runs since this ISSTA paper was accepted)

- Extensive Study: Evaluated 59 previously proposed TCP techniques on LRTS

« Threat: Due to high cost, didn’t run generated test orders [ISSRE’24]

* Findings: Revisited 11 key findings from recent TCP studies, confirming 9 and

refuting 2 findings; presented 3 new findings

 Data/code release:
https://github.com/Irtsuser/LRTS
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Figure 1: Distribution of CI builds by the duration (hours) and size (number of test classes) of all (not only failed) TSRs. The
solid dark lines and left y-axes show CDFs by TSR duration. The dashed lighter lines and right y-axes show CDFs by TSR size.
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Evaluation Setup

Table 2: LRTS dataset summary. TSR denotes test-suite run, TC denotes test class, and TM denotes test method.

Project Main PLs | SLOC | Period (days) | #CIbuild | #TSR | #Failed TSR | #Faﬂ:(tla,tr‘ét“’s ;?;:rai‘;s;i‘l’:df;‘;:d 11;53:[ Hon (Bours)
ActiveMQ Java 669K 827 207 207 109 | 676 3| 6,081 34 436
Hadoop Java 4M 1,094 1299 | 1,299 543 | 829 6 | 7,289 24 5.57
HBase Java M 504 278 553 215 | 1,061 2 | 6,369 3 9.28
Hive Java, HiveQL |  2M 618 2.056 | 2,056 1419 | 1,273 9 | 40,921 83 26.12
Jackrabbit Oak Java 694K 745 860 860 639 | 1,897 12 | 19,699 107 3.27
James Java, Scala | 793K 786 2.404 | 3,147 1399 | 1,864 6 | 34,718 37 2.15
Kafka Java, Scala | 905K 984 11,843 | 39,006 24,047 | 1,232 4| 19399 12 7.59
Karaf Java, Scala | 186K 959 620 620 174 | 205 2 [ 841 2 0.58
Log4j 2 Java 277K 436 270 528 162 | 64l 3| 3918 4 0.25
TVM Python, C++ | 818K 631 1418 | 9.161 1411 | 526 3| 8,564 37 483
Total 21,255 | 57,437 30,118

Table 6: Dataset versions.

Version #Failed TSR
LRTS-All 30,118
LRTS-DeConf 9,683
LRTS-FirstFail 2,076




All Findings

F1 Different failure-to-fault mappings lead to similar ranking of TCP techniques [83].

F2 APFD can be misleading and give different ranking of TCP techniques than APFDc [13, 64].

F3 Basic time-based and history-based techniques can rival or outperform sophisticated IR-based and learning-based techniques [19, 83].

F4 All IR-based techniques perform worse than time-based and history-based techniques [83].

F5 Different configurations have little impact on the effectiveness of IR-based techniques [83, 92].

F6 LTR TCP is among the most effective TCP techniques when training with all available features [19].

F7 In LTR TCP, training with all features (F,;;) outperforms every individual feature set; execution time and outcome features (Fp)
outperform associated history and similarity features (F, and F3) which outperform change features (F4) [19, 110].

AN ERIR N NN

F8 RTL techniques generally perform better than random [98] but worse than LTR techniques [9].

F9 Cost-cognizant hybrid TCP approaches can substantially improve the effectiveness of basic TCP techniques [83].

F10 Among all techniques, hybrid perform the best [83], specifically techniques that combine time-based and history-based heuristics.

F11 Techniques that rely on test outcome frequency, e.g., MostFail and LTR (F; ), are heavily impaired by confounding test failures [21].

F12 Techniques that favor more recent test history, e.g., LatestFail and RTL (NN-TestFail), are resilient to confounding test failures.

F13 Time-based and change-aware techniques, e.g., IR-based, are the least affected by the presence of confounding test failures.

F14 Time-based and change-aware techniques are effective in finding the first failures of tests, followed by Random, then history-based.
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Results (RQ1)

Table 8: APFDc-FFMapy; results on LRTS-DeConf. Horizontal

lines separate TCP technique categories.

Table 9: IR experiment.

. Variable Value Range
Variable
<Q1 [ Q1-2 [ Q2-3 | >Q3
Duration | .644 | .642 628 | .605
#Failure 679 | 672 .640 | .569
Fail ratio | .693 | .686 .607 | .577
Chg size | .617 | .612 .632 | .648

Table 1: LTR

TCP feature sets.

Fi: test history features

Fy: (Test,File)-history features

Failure count
Last failure
Transition count
Last transition
Average duration

Max (test,file)-failure freq

Max (test,file)-transition freq

Max (test,file)-failure freq (relative)
Max (test,file)-transition freq (relative)

) Basic cC CCH

TCP Technique Avg G.Cat G.All | Avg Imp | Avg Imp
QTF-Avg .740 A A - - - -
QTF-Last 739 A A - - - -
LatestFail .735 A A 835  13% 797 8%
LatestTrans 728 A A 830 13% 795 9%
TF-FailFreq .627 B BCD 788  25% 773 23%
TF-TransFreq .614 B BCD | 777 26% 764  24%
MostFail .613 B BCDE | 773 26% - -
MostTrans .598 B CDE | .765 27% 743 24%
Random .502 C F - - - -
IR-GitDiff (TF-IDF) .647 A B 767  18% 789  21%
IR-GitDiff (BM25) .633 AB BC 743 17% 771  21%
IR-WholeFile (TF-IDF) .631 AB BCD 761 20% 785  24%
IR-NoContext (BM25) .630 AB BCD 741 17% 770  22%
IR-NoContext (TF-IDF) | .630 AB BCD 758  20% 784  24%
IR-WholeFile (BM25) .605 B BCDE | .739 22% 767  26%
LTR (Fa11) 736 A A 809 9% | 781 6%
LTR (F;) .614 B BCD 767  24% 739  20%
LTR (F3) 293 B CDE 706 19% 741  24%
LTR (F7) .588 B DE 727 23% 735  24%
LTR (Fy) .505 C F J17  41% 747  47%
RTL (NN-TCFail) 616 A BCD - - - -
RTL (NN-TimeRank) 570 B E - - - -
RTL (NN-FailCount) 511 C F - - - -
RTL (Tabl-TCFail) .504 C F - - - -
RTL (Tabl-FailCount) .495 C F - - - -
RTL (Tabl-TimeRank) .485 C F - - - -

F3: (Test,File)-similarity features

Fy4: change features

Min file path distance
Max file path token similarity
Min file name distance

Distinct authors
Changeset cardinality
Amount of commits




Results (RQ2 & RQ3)

Table 10: Mean APFDc-FFMapy and effectiveness group of
TCP techniques on all three versions of LRTS.

TCP Technique | LRTS-DeConf | LRTS-All | LRTS-FirstFail
QTF-Avg .740 A 671 CD | .796 A
QTF-Last 739 A 677 CD | .798 A
LatestFail 735 A .795 A 467 DE
LatestTrans 728 A 788 A .464 DEF
TF-FailFreq 627 BCD 666 CD | .440 EF
TF-TransFreq 614 BCD 656 D 422 F
MostFail .613 BCDE 720 B 312 G
MostTrans .598 CDE 701 BC | .313 G
Random .502 F 502 I .504 D
IR-GitDiff (TF-IDF) .647 B .589  EF .691 B
IR-GitDiff (BM25) 633  BC 576 FG | .667 BC
IR-WholeFile (TF-IDF) | 631 BCD | 576 FG | .679 B
IR-NoContext (BM25) 630 BCD 579  FG | .666 BC
IR-NoContext (TF-IDF) | .630 BCD 583 EFG | .680 B
IR-WholeFile (BM25) | .605 BCDE | 557 FG | .632 C
LTR (F,;) 736 A 764 A - -
LTR (F) 614 BCD 724 B - -
LTR (F) 593 CDE | 548 GH | - -
LTR (F3) 588 DE 618 E - -
LTR (F,) 505 F 505 I - -
RTL (NN-TCFail) 616 BCD | 549 GH [ - -
RTL (NN-TimeRank) 570 E 516 HI - -
RTL (NN-FailCount) 511 F 481 I - -
RTL (Tabl-TCFail) 504 F .508 I - -
RTL (Tabl-FailCount) 495 F 501 I - -
RTL (Tabl-TimeRank) 485 F 517 HI - -
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