ISSTA 24

Revisiting Test-Case Prioritization on
Long-Running Test Suites

Runxiang Chen, Shuai Wang, Reyhaneh Jabbarvand, Darko Marinov

UNIVERSITY OF

I ILLINOIS

AAAAAAAAAAAAAAA

ISSTA 2024, Vienna, Austria
09/20/2024

X _ Microsoft QUCI'CONVV\
) f{\f CNS-2238045 1

Regression testing for code changes

* Checking that code changes do not break working functionality
* Widely used in modern CI/CD environments

Regression testing for code changes

 Checking that code changes do not break working functionality
* Widely used in modern CI/CD environments

Regression testing for code changes

 Checking that code changes do not break working functionality
* Widely used in modern CI/CD environments

Regression testing for code changes

 Checking that code changes do not break working functionality
* Widely used in modern CI/CD environments

Regression testing for code changes

 Checking that code changes do not break working functionality
* Widely used in modern CI/CD environments

Change

Regression testing for code changes

 Checking that code changes do not break working functionality
* Widely used in modern CI/CD environments

T3 detected bug

Regression testing for code changes

 Checking that code changes do not break working functionality
* Widely used in modern CI/CD environments

Tests

Tm T3 detected bug

Finding failures takes time!

Change 2

Test-Case Prioritization (TCP)

» Reorder tests to expose potential faults sooner

Change

Test-Case Prioritization (TCP)

» Reorder tests to expose potential faults sooner

Tests Tests
To To
T1 T3

T3 “better” at
$§ detecting faults %2
Tn Tm

Change

Test-Case Prioritization (TCP)

» Reorder tests to expose potential faults sooner

Tests
To T
: >
T3 “better” at
%2 detecting faults \
3 Run T3 early
Tn

Change

Test-Case Prioritization (TCP)

» Reorder tests to expose potential faults sooner

Tests
To T
: GE
T3 “better” at
%2 detecting faults \
3 Run T3 early
Tn

Change

How to prioritize tests?

How to prioritize tests?

* Time-based TCP:

* Prioritize tests that run faster

How to prioritize tests?

* Time-based TCP:

* Prioritize tests that run faster

 History-based TCP:

* Prioritize tests that have historical data, e.g., failed more frequently

How to prioritize tests?

* Time-based TCP:

* Prioritize tests that run faster

 History-based TCP:

* Prioritize tests that have historical data, e.g., failed more frequently

 [R-based TCP:

* Prioritize tests that are more textually similar to the code changes

 Learning-based TCP:
« Use ML algorithms to predict the ranking of tests

How to prioritize tests?

* Time-based TCP:

* Prioritize tests that run faster

 History-based TCP:

* Prioritize tests that have historical data, e.g., failed more frequently

 [R-based TCP:

* Prioritize tests that are more textually similar to the code changes

 Learning-based TCP:
« Use ML algorithms to predict the ranking of tests

« Hybrid TCP:

* Combine heuristics from previous categories

Information Retrieval-based TCP

e Information Retrieval (IR)
« Rank text documents based on the relevance to a query

Information Retrieval-based TCP

e Information Retrieval (IR)
« Rank text documents based on the relevance to a query

IR Model

Information Retrieval-based TCP

e Information Retrieval (IR)
« Rank text documents based on the relevance to a query

Information Retrieval-based TCP

e Information Retrieval (IR)

« Rank text documents based on the relevance to a query

IR Model

Ranked
Documents

1. Doc3
2. Doco
3. Doc2

Information Retrieval-based TCP

e Information Retrieval (IR)
« Rank tests based on the relevance to code changes

Ranked
Tests

1. T3
Code 2. To
Changes [t b gkl " 3. T2

Learning-based TCP

Learning-based TCP

 Learning-to-Rank (LTR):

Learning-based TCP

 Learning-to-Rank (LTR):
» Use supervised learning algorithms
 Train on historical test runs to predict ranking of tests for future runs

« Ranking-to-Learn (RTL):

Learning-based TCP

 Learning-to-Rank (LTR):
» Use supervised learning algorithms
 Train on historical test runs to predict ranking of tests for future runs

« Ranking-to-Learn (RTL):
* Use reinforcement learning algorithms
 Continuously rank tests based on test states of the current run
 Receive feedback from the ranking to improve its policy for next run

How to prioritize tests?

* Time-based TCP:

* Prioritize tests that run faster

Which TCP should I use?

* Prioritize tests that are more relevant to changes by textual similarity

 Learning-based TCP:
« Use ML algorithms to predict the ranking of tests

« Hybrid TCP:

* Combine heuristics from previous categories

Datasets are essential for TCP research

Datasets are essential for TCP research

* Prior datasets for TCP are rather limited
 Consist of short-running test suites, e.g., runs for several minutes
« Some from proprietary projects, e.g., test results of Google products
e Outdated CI builds, e.g., >10-year-old builds in TravisTorrent [1]

Datasets are essential for TCP research

* Prior datasets for TCP are rather limited
 Consist of short-running test suites, e.g., runs for several minutes
« Some from proprietary projects, e.g., test results of Google products
e Outdated CI builds, e.g., >10-year-old builds in TravisTorrent [1]

* TCP is most useful on long-running test suites
» More tests, more complex tests
- SAVE MORE TIME!
- Harder to find and prioritize failing tests
* On the contrary, TCP provides little value on short-running test suites

Datasets are essential for TCP research

* Prior datasets for TCP are rather limited
 Consist of short-running test suites, e.g., runs for several minutes
« Some from proprietary projects, e.g., test results of Google products
e Outdated CI builds, e.g., >10-year-old builds in TravisTorrent [1]

* TCP is most useful on long-running test suites
» More tests, more complex tests
- SAVE MORE TIME!
- Harder to find and prioritize failing tests
* On the contrary, TCP provides little value on short-running test suites

« Will the same TCP techniques remain the most effective on
long-running test suites?

Contributions

 Dataset: An extensive dataset focused on recent (2020-2023)
long-running test suites (LRTS) that consists of 21K CI
builds with 57K test-suite runs from 10 open-source projects

* LRTS currently has 100K+ test-suite runs (an additional 43K+ test-
suite runs since this ISSTA paper was accepted)

- Extensive Study: Evaluated 59 previously proposed TCP
techniques on LRTS

* Findings: Revisited 11 key findings from recent TCP studies,
confirming 9 and refuting 2 findings; presented 3 new findings

15
- "l.!'.i' =

 Data/code release: QR code:
https://github.com/Irtsuser/LRTS

10

https://github.com/lrtsuser/LRTS

LRTS Dataset

» Identify 10 Apache software projects that hosted long-running CI
builds in public Jenkins CI servers

11

LRTS Dataset

» Identify 10 Apache software projects that hosted long-running CI
builds in public Jenkins CI servers

We need: Tests Code Diffs Test Failures TestTimes

11

LRTS Dataset

» Identify 10 Apache software projects that hosted long-running CI
builds in public Jenkins CI servers

We need: Tests Code Diffs Test Failures TestTimes

S /
S ,'
\ /
Push to Triggers
/ APACHE _Repo G Cl builds
Developers GitHub Jenkins CI Test Reports

Repo

11

LRTS Dataset

» Identify 10 Apache software projects that hosted long-running CI

e.g., failure of flaky tests and frequently failing tests

We need: Tests Code Diffs Test Failures‘/Test Times
4

4 v f
\ h -~
h \ 14 Long-running CI builds S o /
\\ / | /
Push to Triggers 4z
/! APACH E Repo Cl builds Output § === B

Developers GitHub Jenkins CI Test Reports
Repo

11

LRTS Dataset

» Identify 10 Apache software projects that hosted long-running CI

e.g., failure of flaky tests and frequently failing tests

We need: Tests Code Diffs Test Failures‘/Test Times
4

'\ /) L - - f
\\ /1 Long-running CI builds TS I
\\ / | /
Push to Triggers 4
/! APACH E Repo Cl builds Output
Developers GitHub Jenkins CI Test Reports
Repo

More details in paper 11

LRTS Dataset

LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

12

LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

APACHE

""» ACTIVEMQ

srbmp HERSE AR ‘o HIVE %tvm
ApacheJackrabblt James §3ApacheKafka M Karaf LOG‘IJ@

LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

* Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

APACHE

""» ACTIVEMQ

srbmp HERSE AR ‘o HIVE %tvm
ApacheJackrabblt James §3ApacheKafka a\ﬁf Karaf LOG‘IJ@

LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

* Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

7/ APACHE

9.», ACTIVEMQ

&

Apache Jackrabbit”

m s

RTPTorrent [2] 100K
Peng et al. [3] 123 3K
RT-CI [4] 6 3K
Pan and Pradel [5] 242 15K
TCP-CI [6] 25 21K
Chrome [7] 1 50K

LRTS (Ours) 10 57K

Test Suite Run
Duration (hours)

0.17
0.09
< 0.01

0.35
0.27

7.96
6.50

HIVE "stvm

% James goApache katka /£ KArQOIf LOG‘IJ@

LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

* Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

APACHE

""» ACTIVEMQ

srbmp HERSE AR ‘o HIVE %tvm
ApacheJackrabblt James §3ApacheKafka a\ﬁf Karaf LOG‘IJ@

LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

* Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

« Large-scale: 21,255 unique CI builds from 10 projects, 57,437
test-suite runs and 30,118 (59%) had at least one failed test

{:'»/ ACTIVEMQ

ﬁaﬁgéagmv: Ntvm
ApacheJackgblt James §8Apache Kafka Karaf LOG‘IJ@

LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

* Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

« Large-scale: 21,255 unique CI builds from 10 projects, 57,437
test-suite runs and 30,118 (59%) had at least one failed test

* Diverse test failures: 75% of the failed tests failed < 8 times

{:'»/ ACTIVEMQ

ﬁaﬁgéagmv: Ntvm
ApacheJackzblt James §8Apache Kafka Karaf LOG‘IJ@

LRTS Dataset

* Recent: LRTS spans from 2020 to 2023 from 10 projects

* Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

« Large-scale: 21,255 unique CI builds from 10 projects, 57,437
test-suite runs and 30,118 (59%) had at least one failed test

* Diverse test failures: 75% of the failed tests failed < 8 times
 Scripts: We also released code to build and update LRTS

ﬁaﬁgéagmw Ntvm
ApacheJackzblt James §8Apache Kafka "Karaf LOG‘IJ@

{:'»/ ACTIVEMQ

Evaluation setup

Evaluation setup

e Evaluation Metrics:
» Average Percentage Faults Detected (APFD):

« Average Percentage Faults Detected per Cost (APFDc)

13

Evaluation setup

e Evaluation Metrics:
» Average Percentage Faults Detected (APFD):
m TF, 1

(et L
nxm 2n

« Average Percentage Faults Detected per Cost (APFDc)

1
i=1(Xj=rF, t; —5trF;)

P tpXm

13

Evaluation setup

e Evaluation Metrics:
» Average Percentage Faults Detected (APFD):
m TF, 1

(et L
nxm 2n

« Average Percentage Faults Detected per Cost (APFDc)

1
i=1(Xj=rF, t; —5trF;)
ot xm

* No direct mapping of test failures to faults:
 FFMaps: assumes all failures map to the same fault
 FFMapy: assumes each failure maps to a unique fault

13

Evaluation setup

Evaluation setup

 Study 26 basic TCP techniques:
« 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL
« Random as baseline

14

Evaluation setup

 Study 26 basic TCP techniques:
« 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL
« Random as baseline

» Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques

14

Evaluation setup

 Study 26 basic TCP techniques:
« 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL
« Random as baseline

» Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques
 Cost-cognizant (CC): prioritize tests with a short execution time

14

Evaluation setup

 Study 26 basic TCP techniques:
« 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL
« Random as baseline

» Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques
 Cost-cognizant (CC): prioritize tests with a short execution time
 Cost-history-cognizant (CCH): prioritize tests that failed more often

14

Evaluation setup More details :ilbout ’fhe studied
TCP techniques in paper

 Study 26 basic TCP techniques:
« 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL
« Random as baseline

» Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques
 Cost-cognizant (CC): prioritize tests with a short execution time
 Cost-history-cognizant (CCH): prioritize tests that failed more often

14

Evaluation setup More details :ilbout ’fhe studied
TCP techniques in paper

 Study 26 basic TCP techniques:
« 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL
« Random as baseline

» Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques
 Cost-cognizant (CC): prioritize tests with a short execution time
 Cost-history-cognizant (CCH): prioritize tests that failed more often

* 3 LRTS versions:
« LRTS-All: Keeps all test failures
« LRTS-DeConf: Omits identified confounding test failures
« LRTS-FirstFail: Only keeps the first failure of each non-flaky test

14

Evaluating TCP techniques on LRTS

Evaluating TCP techniques on LRTS

« RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

15

Evaluating TCP techniques on LRTS

« RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

« RQ2: How do confounding test failures impact TCP effectiveness?
(1 confirmation and 2 new findings)

15

Evaluating TCP techniques on LRTS

« RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

« RQ2: How do confounding test failures impact TCP effectiveness?
(1 confirmation and 2 new findings)

* RQ3: How do TCP techniques perform in detecting the first failure
throughout CI history for each failed test? (1 new finding)

15

Evaluating TCP techniques on LRTS

« RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

« RQ2: How do confounding test failures impact TCP effectiveness?
(1 confirmation and 2 new findings)

* RQ3: How do TCP techniques perform in detecting the first failure
throughout CI history for each failed test? (1 new finding)

» RQ1 - LRTS-DeConf; RQ2 - LRTS-All; RQ3 - LRTS-FirstFail

15

RQ1: Effectiveness of TCP techniques

* Confirmed 8 and refuted 2 prior findings, e.g.,

Confirmations are colored green; refutations red; new findings purple

16

RQ1: Effectiveness of TCP techniques

* Confirmed 8 and refuted 2 prior findings, e.g.,
» Simpler TCPs (time-based, history-based) outperform
sophisticated ones (IR-based, ML/RL-based) [3, 9]

Confirmations are colored green; refutations red; new findings purple

16

RQ1: Effectiveness of TCP techniques

* Confirmed 8 and refuted 2 prior findings, e.g.,
» Simpler TCPs (time-based, history-based) outperform
sophisticated ones (IR-based, ML/RL-based) [3, 9]
 Cost-cognizant hybrids substantially improve basic TCPs [3]
 Prioritizing faster tests that failed recently is the best [3]

Confirmations are colored green; refutations red; new findings purple

16

RQ1: Effectiveness of TCP techniques

* Confirmed 8 and refuted 2 prior findings, e.g.,
» Simpler TCPs (time-based, history-based) outperform
sophisticated ones (IR-based, ML/RL-based) [3, 9]
 Cost-cognizant hybrids substantially improve basic TCPs [3]
 Prioritizing faster tests that failed recently is the best [3]
» IR-based TCP performed worse when test suites have more
failures or longer-running tests [3]

Confirmations are colored green; refutations red; new findings purple

16

RQ1: Effectiveness of TCP techniques

* Confirmed 8 and refuted 2 prior findings, e.g.,
» Simpler TCPs (time-based, history-based) outperform
sophisticated ones (IR-based, ML/RL-based) [3, 9]
 Cost-cognizant hybrids substantially improve basic TCPs [3]
 Prioritizing faster tests that failed recently is the best [3]
» IR-based TCP performed worse when test suites have more
failures or longer-running tests [3]
* Different configurations have little impact on the
effectiveness of IR-based techniques [3, 8]

Confirmations are colored green; refutations red; new findings purple

16

RQ2: Impact* of confounding test failures (CTF)

» CTF: failures of flaky tests and frequently failing tests
* CTF should NOT be prioritized over other failures

RQ2: Impact* of confounding test failures (CTF)

» CTF: failures of flaky tests and frequently failing tests
* CTF should NOT be prioritized over other failures

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over

non-CTFs that are true failures.
17

RQ2: Impact* of confounding test failures (CTF)

» CTF: failures of flaky tests and frequently failing tests
* CTF should NOT be prioritized over other failures

« Confirmed 1 prior finding and present 2 new findings,

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over

non-CTFs that are true failures.
17

RQ2: Impact* of confounding test failures (CTF)

» CTF: failures of flaky tests and frequently failing tests
* CTF should NOT be prioritized over other failures

« Confirmed 1 prior finding and present 2 new findings,
 History-based TCP are the most negatively impacted® by CTF [7],
but those favoring recent history are resilient to CTF

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over

non-CTFs that are true failures.
17

RQ2: Impact* of confounding test failures (CTF)

» CTF: failures of flaky tests and frequently failing tests
* CTF should NOT be prioritized over other failures

« Confirmed 1 prior finding and present 2 new findings,
 History-based TCP are the most negatively impacted® by CTF [7],
but those favoring recent history are resilient to CTF
» Time-based and change-aware (IR-based) TCP are the least
impacted by CTF

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over

non-CTFs that are true failures.
17

RQ3: TCP Effectiveness on finding first failures

e First failure of a test: the first time a test failed in CI

* Goal: understand how TCP perform when most tests do
not fail

RQ3: TCP Effectiveness on finding first failures

e First failure of a test: the first time a test failed in CI

* Goal: understand how TCP perform when most tests do
not fail

* Presented 1 new finding, i.e.,
» Time-based and change-aware TCP are more effective
in finding first failures, then Random, then history-

based TCP

18

Conclusions

« Dataset: An extensive dataset focused on recent (2020-2023) long-running
test suites (LRTS) that consists of 21K CI builds with 57K test-suite runs
from 10 open-source projects

* LRTS currently has 100K+ test-suite runs (an additional 43K+ test-suite
runs since this ISSTA paper was accepted)

- Extensive Study: Evaluated 59 previously proposed TCP techniques on LRTS

« Threat: Due to high cost, didn’t run generated test orders [ISSRE’24]

* Findings: Revisited 11 key findings from recent TCP studies, confirming 9 and

refuting 2 findings; presented 3 new findings

 Data/code release:
https://github.com/Irtsuser/LRTS

19

https://github.com/lrtsuser/LRTS

References

[1] Moritz Beller, Georgios Gousios, and Andy Zaidman. TravisTorrent: Synthesizing Travis CI and GitHub
for Full-Stack Research on Continuous Integration. In MSR (2017).

[2] Toni Mattis, Patrick Rein, Falco Dursch, and Robert Hirschfeld. RTPTorrent: An Open-source Dataset for
Evaluating Regression Test Prioritization. In MSR (2020).

[3] Qianyang Peng, August Shi, and Lingming Zhang. Empirically Revisiting and Enhancing IR-Based Test-
Case Prioritization. In ISSTA (2020).

[4] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono, and Stefano Russo.
%earm)ng—to—Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration. In ICSE
2020).

[5] Cong Pan and Michael Pradel. Continuous Test Suite Failure Prediction. In ISSTA (2021).

[6] Ahmadreza Saboor Yaraghi, Mojtaba Bagherzadeh, Nafiseh Kahani, and Lionel C Briand. Scalable and
Accurate Test Case Prioritization in Continuous Integration Contexts. In TSE (2022).

[7] Emad Fallahzadeh and Peter C Rigby. The Impact of Flaky Tests on Historical Test Prioritization on
Chrome. In ICSE-SEIP (2022).

[8] Ripon K Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E Perry. An Information Retrieval
Approach for Regression Test Prioritization Based on Program Changes. In ICSE (2021).

[9] Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. Empirically Evaluating Readily
Available Information for Regression Test Optimization in Continuous Integration. In ISSTA (2021).

Backup

.
in

N
(%,

o
o

';I'Sl?ndu:ation (hours)
n o W

o
o

Figure 1: Distribution of CI builds by the duration (hours) and size (number of test classes) of all (not only failed) TSRs. The
solid dark lines and left y-axes show CDFs by TSR duration. The dashed lighter lines and right y-axes show CDFs by TSR size.

Cl Build CDFs

ActiveMQ Hadoop

bk
]

L1000 20

——

Ls00 107

40 60 80 100 0 20 40 60 80 100

L 2000
L1000 19]

, . . 0 0! . . , . .

40 60 80 100 0 20 40 60 80 100

3000
15

2000

1000

10

5

1500
7.5

1000

5.0

500 2.5

0.0}

40 60 80 100
% Cl builds

1500 607
1000 40/
500 20

T 0 0 L T

200

100

600

400

200

Jackrabbit Oak

TVM

0 20 40 60 80 100

2000

1000

600

400

200

TSR size (#Test classes)

Evaluation Setup

Table 2: LRTS dataset summary. TSR denotes test-suite run, TC denotes test class, and TM denotes test method.

Project Main PLs | SLOC | Period (days) | #CIbuild | #TSR | #Failed TSR | #Faﬂ:(tla,tr‘ét“’s ;?;:rai‘;s;i‘l’:df;‘;:d 11;53:[Hon (Bours)
ActiveMQ Java 669K 827 207 207 109 | 676 3| 6,081 34 436
Hadoop Java 4M 1,094 1299 | 1,299 543 | 829 6 | 7,289 24 5.57
HBase Java M 504 278 553 215 | 1,061 2 | 6,369 3 9.28
Hive Java, HiveQL | 2M 618 2.056 | 2,056 1419 | 1,273 9 | 40,921 83 26.12
Jackrabbit Oak Java 694K 745 860 860 639 | 1,897 12 | 19,699 107 3.27
James Java, Scala | 793K 786 2.404 | 3,147 1399 | 1,864 6 | 34,718 37 2.15
Kafka Java, Scala | 905K 984 11,843 | 39,006 24,047 | 1,232 4| 19399 12 7.59
Karaf Java, Scala | 186K 959 620 620 174 | 205 2 [841 2 0.58
Log4j 2 Java 277K 436 270 528 162 | 64l 3| 3918 4 0.25
TVM Python, C++ | 818K 631 1418 | 9.161 1411 | 526 3| 8,564 37 483
Total 21,255 | 57,437 30,118

Table 6: Dataset versions.

Version #Failed TSR
LRTS-All 30,118
LRTS-DeConf 9,683
LRTS-FirstFail 2,076

All Findings

F1 Different failure-to-fault mappings lead to similar ranking of TCP techniques [83].

F2 APFD can be misleading and give different ranking of TCP techniques than APFDc [13, 64].

F3 Basic time-based and history-based techniques can rival or outperform sophisticated IR-based and learning-based techniques [19, 83].

F4 All IR-based techniques perform worse than time-based and history-based techniques [83].

F5 Different configurations have little impact on the effectiveness of IR-based techniques [83, 92].

F6 LTR TCP is among the most effective TCP techniques when training with all available features [19].

F7 In LTR TCP, training with all features (F,;;) outperforms every individual feature set; execution time and outcome features (Fp)
outperform associated history and similarity features (F, and F3) which outperform change features (F4) [19, 110].

AN ERIR N NN

F8 RTL techniques generally perform better than random [98] but worse than LTR techniques [9].

F9 Cost-cognizant hybrid TCP approaches can substantially improve the effectiveness of basic TCP techniques [83].

F10 Among all techniques, hybrid perform the best [83], specifically techniques that combine time-based and history-based heuristics.

F11 Techniques that rely on test outcome frequency, e.g., MostFail and LTR (F;), are heavily impaired by confounding test failures [21].

F12 Techniques that favor more recent test history, e.g., LatestFail and RTL (NN-TestFail), are resilient to confounding test failures.

F13 Time-based and change-aware techniques, e.g., IR-based, are the least affected by the presence of confounding test failures.

F14 Time-based and change-aware techniques are effective in finding the first failures of tests, followed by Random, then history-based.

RO RO L RNANAYY

Results (RQ1

QTF-Avg -
QTF-Last 1
LatestFail 1
LatestTrans -
TF-FailFreq -
TF-TransFreq
MostFail -
MostTrans
Random -

0.

IR-GitDiff (TF-IDF)

IR-GitDiff (BM25
IR-WholeFile (TF-IDF
IR-NoContext (BM25

IR-NoContext (TF-IDF) -

IR-WholeFile (BM25

0.

LTR (Fay) 1
LTR (F1) -
LTR (F3) -
LTR (F3) -
LTR (F4) 1

0.

RTL (NN-TCFail) 1

RTL (NN-TimeRank

RTL (NN-FailCount) 1

RTL (Tabl-TCFail

RTL (Tabl-FailCount) -

RTL (Tabl-TimeRank
0

| ! ! L

— e e e e —
' L L

APFDc-FFMapy

APFDc-FFMaps

APFD-FFMapy

APFD-FFMaps

o Mean — + —— — —_— g
. — " + —0—+ — + —r— 4+
= Median ek e e —
—— H— - —h
—- — + —L O — —Oof—
—— —f +—Ig+— +——)Taf—
H—ok—1+— —— O +— +H—
— — o — —fh —
O — O~ +0+ —TO—
0O 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 0.2 04 06 08 1.0
—o——1— —o—1— L o m—] — g
o —io—— o —
T — O — g —L O
— o —+ — o1 o —+ [S o m—
— + [me) 1] [B © E— —x
o 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 0.8 1.0
+ H— + — + — + + —Of
— 03— — o3 + L —) I] + —{ O
+ —{} +H + + —_—L e + + — 1 ++ + —
=+ — + — 1 +H HE # —————— O ++ HHHE A —————— O
D+ HH + +H —T o H D+ +HA—{T O
o 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
— o — — g —T— ++ + — O+ +
+ + —T + 4 —Tg o} + + + —_—
+ +H+—O 1+ ++ + o — g + —— 4 + W —
+ +— T+ —_— g + — IO+ + —_—L g
AT ++ LY + H — O+ —
+4+ H——+ ++ — + F—O— ++ + + +—T O
0O 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

Results (RQ1)

Table 8: APFDc-FFMapy; results on LRTS-DeConf. Horizontal

lines separate TCP technique categories.

Table 9: IR experiment.

. Variable Value Range
Variable
<Q1 [Q1-2 [Q2-3 | >Q3
Duration | .644 | .642 628 | .605
#Failure 679 | 672 .640 | .569
Fail ratio | .693 | .686 .607 | .577
Chg size | .617 | .612 .632 | .648

Table 1: LTR

TCP feature sets.

Fi: test history features

Fy: (Test,File)-history features

Failure count
Last failure
Transition count
Last transition
Average duration

Max (test,file)-failure freq

Max (test,file)-transition freq

Max (test,file)-failure freq (relative)
Max (test,file)-transition freq (relative)

) Basic cC CCH

TCP Technique Avg G.Cat G.All | Avg Imp | Avg Imp
QTF-Avg .740 A A - - - -
QTF-Last 739 A A - - - -
LatestFail .735 A A 835 13% 797 8%
LatestTrans 728 A A 830 13% 795 9%
TF-FailFreq .627 B BCD 788 25% 773 23%
TF-TransFreq .614 B BCD | 777 26% 764 24%
MostFail .613 B BCDE | 773 26% - -
MostTrans .598 B CDE | .765 27% 743 24%
Random .502 C F - - - -
IR-GitDiff (TF-IDF) .647 A B 767 18% 789 21%
IR-GitDiff (BM25) .633 AB BC 743 17% 771 21%
IR-WholeFile (TF-IDF) .631 AB BCD 761 20% 785 24%
IR-NoContext (BM25) .630 AB BCD 741 17% 770 22%
IR-NoContext (TF-IDF) | .630 AB BCD 758 20% 784 24%
IR-WholeFile (BM25) .605 B BCDE | .739 22% 767 26%
LTR (Fa11) 736 A A 809 9% | 781 6%
LTR (F;) .614 B BCD 767 24% 739 20%
LTR (F3) 293 B CDE 706 19% 741 24%
LTR (F7) .588 B DE 727 23% 735 24%
LTR (Fy) .505 C F J17 41% 747 47%
RTL (NN-TCFail) 616 A BCD - - - -
RTL (NN-TimeRank) 570 B E - - - -
RTL (NN-FailCount) 511 C F - - - -
RTL (Tabl-TCFail) .504 C F - - - -
RTL (Tabl-FailCount) .495 C F - - - -
RTL (Tabl-TimeRank) .485 C F - - - -

F3: (Test,File)-similarity features

Fy4: change features

Min file path distance
Max file path token similarity
Min file name distance

Distinct authors
Changeset cardinality
Amount of commits

Results (RQ2 & RQ3)

Table 10: Mean APFDc-FFMapy and effectiveness group of
TCP techniques on all three versions of LRTS.

TCP Technique | LRTS-DeConf | LRTS-All | LRTS-FirstFail
QTF-Avg .740 A 671 CD | .796 A
QTF-Last 739 A 677 CD | .798 A
LatestFail 735 A .795 A 467 DE
LatestTrans 728 A 788 A .464 DEF
TF-FailFreq 627 BCD 666 CD | .440 EF
TF-TransFreq 614 BCD 656 D 422 F
MostFail .613 BCDE 720 B 312 G
MostTrans .598 CDE 701 BC | .313 G
Random .502 F 502 I .504 D
IR-GitDiff (TF-IDF) .647 B .589 EF .691 B
IR-GitDiff (BM25) 633 BC 576 FG | .667 BC
IR-WholeFile (TF-IDF) | 631 BCD | 576 FG | .679 B
IR-NoContext (BM25) 630 BCD 579 FG | .666 BC
IR-NoContext (TF-IDF) | .630 BCD 583 EFG | .680 B
IR-WholeFile (BM25) | .605 BCDE | 557 FG | .632 C
LTR (F,;) 736 A 764 A - -
LTR (F) 614 BCD 724 B - -
LTR (F) 593 CDE | 548 GH | - -
LTR (F3) 588 DE 618 E - -
LTR (F,) 505 F 505 I - -
RTL (NN-TCFail) 616 BCD | 549 GH [- -
RTL (NN-TimeRank) 570 E 516 HI - -
RTL (NN-FailCount) 511 F 481 I - -
RTL (Tabl-TCFail) 504 F .508 I - -
RTL (Tabl-FailCount) 495 F 501 I - -
RTL (Tabl-TimeRank) 485 F 517 HI - -

	Slide 1: Revisiting Test-Case Prioritization on Long-Running Test Suites
	Slide 2: Regression testing for code changes
	Slide 3: Regression testing for code changes
	Slide 4: Regression testing for code changes
	Slide 5: Regression testing for code changes
	Slide 6: Regression testing for code changes
	Slide 7: Regression testing for code changes
	Slide 8: Regression testing for code changes
	Slide 9: Test-Case Prioritization (TCP)
	Slide 10: Test-Case Prioritization (TCP)
	Slide 11: Test-Case Prioritization (TCP)
	Slide 12: Test-Case Prioritization (TCP)
	Slide 13: How to prioritize tests?
	Slide 14: How to prioritize tests?
	Slide 15: How to prioritize tests?
	Slide 16: How to prioritize tests?
	Slide 17: How to prioritize tests?
	Slide 18: Information Retrieval-based TCP
	Slide 19: Information Retrieval-based TCP
	Slide 20: Information Retrieval-based TCP
	Slide 21: Information Retrieval-based TCP
	Slide 22: Information Retrieval-based TCP
	Slide 23: Learning-based TCP
	Slide 24: Learning-based TCP
	Slide 25: Learning-based TCP
	Slide 26: Learning-based TCP
	Slide 27: How to prioritize tests?
	Slide 28: Datasets are essential for TCP research
	Slide 29: Datasets are essential for TCP research
	Slide 30: Datasets are essential for TCP research
	Slide 31: Datasets are essential for TCP research
	Slide 32: Contributions
	Slide 33: LRTS Dataset
	Slide 34: LRTS Dataset
	Slide 35: LRTS Dataset
	Slide 36: LRTS Dataset
	Slide 37: LRTS Dataset
	Slide 38: LRTS Dataset
	Slide 39: LRTS Dataset
	Slide 40: LRTS Dataset
	Slide 41: LRTS Dataset
	Slide 42: LRTS Dataset
	Slide 43: LRTS Dataset
	Slide 44: LRTS Dataset
	Slide 45: LRTS Dataset
	Slide 46: LRTS Dataset
	Slide 47: Evaluation setup
	Slide 48: Evaluation setup
	Slide 49: Evaluation setup
	Slide 50: Evaluation setup
	Slide 51: Evaluation setup
	Slide 52: Evaluation setup
	Slide 53: Evaluation setup
	Slide 54: Evaluation setup
	Slide 55: Evaluation setup
	Slide 56: Evaluation setup
	Slide 57: Evaluation setup
	Slide 58: Evaluating TCP techniques on LRTS
	Slide 59: Evaluating TCP techniques on LRTS
	Slide 60: Evaluating TCP techniques on LRTS
	Slide 61: Evaluating TCP techniques on LRTS
	Slide 62: Evaluating TCP techniques on LRTS
	Slide 63: RQ1: Effectiveness of TCP techniques
	Slide 64: RQ1: Effectiveness of TCP techniques
	Slide 65: RQ1: Effectiveness of TCP techniques
	Slide 66: RQ1: Effectiveness of TCP techniques
	Slide 67: RQ1: Effectiveness of TCP techniques
	Slide 68: RQ2: Impact* of confounding test failures (CTF)
	Slide 69: RQ2: Impact* of confounding test failures (CTF)
	Slide 70: RQ2: Impact* of confounding test failures (CTF)
	Slide 71: RQ2: Impact* of confounding test failures (CTF)
	Slide 72: RQ2: Impact* of confounding test failures (CTF)
	Slide 73: RQ3: TCP Effectiveness on finding first failures
	Slide 74: RQ3: TCP Effectiveness on finding first failures
	Slide 75: Conclusions
	Slide 76: References
	Slide 77
	Slide 78: Backup
	Slide 79: CI Build CDFs
	Slide 80: Evaluation Setup
	Slide 81: All Findings
	Slide 82: Results (RQ1)
	Slide 83: Results (RQ1)
	Slide 84: Results (RQ2 & RQ3)

