
Runxiang Chen, Shuai Wang, Reyhaneh Jabbarvand, Darko Marinov

ISSTA 2024, Vienna, Austria

09/20/2024

Revisiting Test-Case Prioritization on
Long-Running Test Suites

1

CCF-1763788

CCF-1956374

CNS-2238045

Regression testing for code changes

• Checking that code changes do not break working functionality

• Widely used in modern CI/CD environments

2

Regression testing for code changes

• Checking that code changes do not break working functionality

• Widely used in modern CI/CD environments

2

Code
Under

Test
V1

Regression testing for code changes

• Checking that code changes do not break working functionality

• Widely used in modern CI/CD environments

2

Code
Under

Test
V1

Tests

T0
T1

T2
T3

…
Tn

Regression testing for code changes

• Checking that code changes do not break working functionality

• Widely used in modern CI/CD environments

2

Code
Under

Test
V1

Code
Under

Test
V2

Tests

T0
T1

T2
T3

…
Tn

Tests

T0
T1

T2
T3

…
Tm

Regression testing for code changes

• Checking that code changes do not break working functionality

• Widely used in modern CI/CD environments

2

Code
Under

Test
V1

Code
Under

Test
V2

Tests

T0
T1

T2
T3

…
Tn

Tests

T0
T1

T2
T3

…
Tm

Change

Regression testing for code changes

• Checking that code changes do not break working functionality

• Widely used in modern CI/CD environments

2

Code
Under

Test
V1

Code
Under

Test
V2

Tests

T0
T1

T2
T3

…
Tn

Tests

T0
T1

T2
T3

…
Tm

Change

T3 detected bug

Regression testing for code changes

• Checking that code changes do not break working functionality

• Widely used in modern CI/CD environments

2

Code
Under

Test
V1

Code
Under

Test
V2

Tests

T0
T1

T2
T3

…
Tn

Tests

T0
T1

T2
T3

…
Tm

Change

Finding failures takes time!

T3 detected bug

Test-Case Prioritization (TCP)

• Reorder tests to expose potential faults sooner

3

Code
Under

Test
V1

Code
Under

Test
V2

Tests

T0
T1

T2
T3

…
Tn

Tests

T0
T3

T1
T2

…
Tm

Change

Test-Case Prioritization (TCP)

• Reorder tests to expose potential faults sooner

3

Code
Under

Test
V1

Code
Under

Test
V2

Tests

T0
T1

T2
T3

…
Tn

Tests

T0
T3

T1
T2

…
Tm

Change

T3 “better” at
detecting faults

Test-Case Prioritization (TCP)

• Reorder tests to expose potential faults sooner

3

Code
Under

Test
V1

Code
Under

Test
V2

Tests

T0
T1

T2
T3

…
Tn

Tests

T0
T3

T1
T2

…
Tm

Change

Run T3 early

T3 “better” at
detecting faults

Test-Case Prioritization (TCP)

• Reorder tests to expose potential faults sooner

3

Code
Under

Test
V1

Code
Under

Test
V2

Tests

T0
T1

T2
T3

…
Tn

Tests

T0
T3

T1
T2

…
Tm

Change

Run T3 early

T3 “better” at
detecting faults

How to prioritize tests?

4

How to prioritize tests?

• Time-based TCP:
• Prioritize tests that run faster

4

How to prioritize tests?

• Time-based TCP:
• Prioritize tests that run faster

• History-based TCP:
• Prioritize tests that have historical data, e.g., failed more frequently

4

How to prioritize tests?

• Time-based TCP:
• Prioritize tests that run faster

• History-based TCP:
• Prioritize tests that have historical data, e.g., failed more frequently

• IR-based TCP:
• Prioritize tests that are more textually similar to the code changes

• Learning-based TCP:
• Use ML algorithms to predict the ranking of tests

4

How to prioritize tests?

• Time-based TCP:
• Prioritize tests that run faster

• History-based TCP:
• Prioritize tests that have historical data, e.g., failed more frequently

• IR-based TCP:
• Prioritize tests that are more textually similar to the code changes

• Learning-based TCP:
• Use ML algorithms to predict the ranking of tests

• Hybrid TCP:
• Combine heuristics from previous categories

4

Information Retrieval-based TCP

• Information Retrieval (IR)
• Rank text documents based on the relevance to a query

5

Information Retrieval-based TCP

• Information Retrieval (IR)
• Rank text documents based on the relevance to a query

5

IR Model

Information Retrieval-based TCP

• Information Retrieval (IR)
• Rank text documents based on the relevance to a query

5

Documents

IR ModelQuery

Information Retrieval-based TCP

• Information Retrieval (IR)
• Rank text documents based on the relevance to a query

5

Documents

IR ModelQuery

1. Doc3
2. Doc0
3. Doc2
…

Ranked
Documents

Information Retrieval-based TCP

• Information Retrieval (IR)
• Rank tests based on the relevance to code changes

6

Tests

IR Model
Code

Changes

1. T3
2. T0
3. T2
…

Ranked
Tests

Learning-based TCP

7

Learning-based TCP

• Learning-to-Rank (LTR):

7

Learning-based TCP

• Learning-to-Rank (LTR):
• Use supervised learning algorithms

• Train on historical test runs to predict ranking of tests for future runs

• Ranking-to-Learn (RTL):

7

Learning-based TCP

• Learning-to-Rank (LTR):
• Use supervised learning algorithms

• Train on historical test runs to predict ranking of tests for future runs

• Ranking-to-Learn (RTL):
• Use reinforcement learning algorithms

• Continuously rank tests based on test states of the current run

• Receive feedback from the ranking to improve its policy for next run

7

How to prioritize tests?

• Time-based TCP:
• Prioritize tests that run faster

• History-based TCP:
• Prioritize tests that have historically failed more frequently

• IR-based TCP:
• Prioritize tests that are more relevant to changes by textual similarity

• Learning-based TCP:
• Use ML algorithms to predict the ranking of tests

• Hybrid TCP:
• Combine heuristics from previous categories

8

Which TCP should I use?

Datasets are essential for TCP research

9

Datasets are essential for TCP research
• Prior datasets for TCP are rather limited

• Consist of short-running test suites, e.g., runs for several minutes
• Some from proprietary projects, e.g., test results of Google products
• Outdated CI builds, e.g., >10-year-old builds in TravisTorrent [1]

9

Datasets are essential for TCP research
• Prior datasets for TCP are rather limited

• Consist of short-running test suites, e.g., runs for several minutes
• Some from proprietary projects, e.g., test results of Google products
• Outdated CI builds, e.g., >10-year-old builds in TravisTorrent [1]

• TCP is most useful on long-running test suites
• More tests, more complex tests
 → SAVE MORE TIME!
 → Harder to find and prioritize failing tests
• On the contrary, TCP provides little value on short-running test suites

9

Datasets are essential for TCP research
• Prior datasets for TCP are rather limited

• Consist of short-running test suites, e.g., runs for several minutes
• Some from proprietary projects, e.g., test results of Google products
• Outdated CI builds, e.g., >10-year-old builds in TravisTorrent [1]

• TCP is most useful on long-running test suites
• More tests, more complex tests
 → SAVE MORE TIME!
 → Harder to find and prioritize failing tests
• On the contrary, TCP provides little value on short-running test suites

• Will the same TCP techniques remain the most effective on
long-running test suites?

9

Contributions
• Dataset: An extensive dataset focused on recent (2020-2023)

long-running test suites (LRTS) that consists of 21K CI
builds with 57K test-suite runs from 10 open-source projects

• LRTS currently has 100K+ test-suite runs (an additional 43K+ test-
suite runs since this ISSTA paper was accepted)

• Extensive Study: Evaluated 59 previously proposed TCP
techniques on LRTS

• Findings: Revisited 11 key findings from recent TCP studies,
confirming 9 and refuting 2 findings; presented 3 new findings

• Data/code release: QR code:
https://github.com/lrtsuser/LRTS

10

https://github.com/lrtsuser/LRTS

LRTS Dataset
• Identify 1o Apache software projects that hosted long-running CI

builds in public Jenkins CI servers

11

LRTS Dataset
• Identify 1o Apache software projects that hosted long-running CI

builds in public Jenkins CI servers

11

Tests Code Diffs Test Failures Test TimesWe need:

LRTS Dataset
• Identify 1o Apache software projects that hosted long-running CI

builds in public Jenkins CI servers

11

Tests Code Diffs Test Failures

Developers GitHub
Repo

Jenkins CI

Push to
Repo

Triggers
CI builds

Test Reports

Output

Test TimesWe need:

LRTS Dataset
• Identify 1o Apache software projects that hosted long-running CI

builds in public Jenkins CI servers

11

Tests Code Diffs Test Failures

Developers GitHub
Repo

Jenkins CI

Push to
Repo

Triggers
CI builds

Test Reports

Output

Test Times

Long-running CI builds

Identify confounding test failures
e.g., failure of flaky tests and frequently failing tests

We need:

LRTS Dataset
• Identify 1o Apache software projects that hosted long-running CI

builds in public Jenkins CI servers

11

Tests Code Diffs Test Failures

Developers GitHub
Repo

Jenkins CI

Push to
Repo

Triggers
CI builds

Test Reports

Output

More details in paper

Test Times

Long-running CI builds

Identify confounding test failures
e.g., failure of flaky tests and frequently failing tests

We need:

LRTS Dataset

12

LRTS Dataset
• Recent: LRTS spans from 2020 to 2023 from 10 projects

12

LRTS Dataset
• Recent: LRTS spans from 2020 to 2023 from 10 projects

12

LRTS Dataset
• Recent: LRTS spans from 2020 to 2023 from 10 projects

• Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

12

LRTS Dataset
• Recent: LRTS spans from 2020 to 2023 from 10 projects

• Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

12

TCP Dataset #Project #TSR Test Suite Run
Duration (hours)

RTPTorrent [2] 20 100K 0.17

Peng et al. [3] 123 3K 0.09

RT-CI [4] 6 3K < 0.01

Pan and Pradel [5] 242 15K 0.35

TCP-CI [6] 25 21K 0.27

Chrome [7] 1 50K 7.96

LRTS (Ours) 10 57K 6.50

LRTS Dataset
• Recent: LRTS spans from 2020 to 2023 from 10 projects

• Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

12

LRTS Dataset
• Recent: LRTS spans from 2020 to 2023 from 10 projects

• Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

• Large-scale: 21,255 unique CI builds from 10 projects, 57,437
test-suite runs and 30,118 (59%) had at least one failed test

12

LRTS Dataset
• Recent: LRTS spans from 2020 to 2023 from 10 projects

• Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

• Large-scale: 21,255 unique CI builds from 10 projects, 57,437
test-suite runs and 30,118 (59%) had at least one failed test

• Diverse test failures: 75% of the failed tests failed < 8 times

12

LRTS Dataset
• Recent: LRTS spans from 2020 to 2023 from 10 projects

• Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

• Large-scale: 21,255 unique CI builds from 10 projects, 57,437
test-suite runs and 30,118 (59%) had at least one failed test

• Diverse test failures: 75% of the failed tests failed < 8 times

• Scripts: We also released code to build and update LRTS

12

13

Evaluation setup

• Evaluation Metrics:
• Average Percentage Faults Detected (APFD):

• Average Percentage Faults Detected per Cost (APFDc)

13

Evaluation setup

• Evaluation Metrics:
• Average Percentage Faults Detected (APFD):

• Average Percentage Faults Detected per Cost (APFDc)

13

Evaluation setup

1 −
σ𝑖=1
𝑚 𝑇𝐹𝑖
𝑛 ×𝑚

+
1

2𝑛

1 −
σ𝑖=1
𝑚 (σ𝑗=𝑇𝐹𝑖

𝑛 𝑡𝑗 −
1
2
𝑡𝑇𝐹𝑖)

σ𝑗=1
𝑛 𝑡𝑗 ×𝑚

• Evaluation Metrics:
• Average Percentage Faults Detected (APFD):

• Average Percentage Faults Detected per Cost (APFDc)

• No direct mapping of test failures to faults:
• 𝐹𝐹𝑀𝑎𝑝𝑆: assumes all failures map to the same fault

• 𝐹𝐹𝑀𝑎𝑝𝑈: assumes each failure maps to a unique fault
13

Evaluation setup

1 −
σ𝑖=1
𝑚 𝑇𝐹𝑖
𝑛 ×𝑚

+
1

2𝑛

1 −
σ𝑖=1
𝑚 (σ𝑗=𝑇𝐹𝑖

𝑛 𝑡𝑗 −
1
2
𝑡𝑇𝐹𝑖)

σ𝑗=1
𝑛 𝑡𝑗 ×𝑚

Evaluation setup

14

Evaluation setup
• Study 26 basic TCP techniques:

• 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL

• Random as baseline

14

Evaluation setup
• Study 26 basic TCP techniques:

• 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL

• Random as baseline

• Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques

14

Evaluation setup
• Study 26 basic TCP techniques:

• 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL

• Random as baseline

• Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques

• Cost-cognizant (CC): prioritize tests with a short execution time

14

Evaluation setup
• Study 26 basic TCP techniques:

• 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL

• Random as baseline

• Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques

• Cost-cognizant (CC): prioritize tests with a short execution time

• Cost-history-cognizant (CCH): prioritize tests that failed more often

14

Evaluation setup
• Study 26 basic TCP techniques:

• 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL

• Random as baseline

• Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques

• Cost-cognizant (CC): prioritize tests with a short execution time

• Cost-history-cognizant (CCH): prioritize tests that failed more often

14

More details about the studied
TCP techniques in paper

Evaluation setup
• Study 26 basic TCP techniques:

• 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL

• Random as baseline

• Apply 2 cost-cognizant hybrid TCP approaches to the basic
techniques to construct 33 hybrid techniques

• Cost-cognizant (CC): prioritize tests with a short execution time

• Cost-history-cognizant (CCH): prioritize tests that failed more often

• 3 LRTS versions:

• LRTS-All: Keeps all test failures

• LRTS-DeConf: Omits identified confounding test failures

• LRTS-FirstFail: Only keeps the first failure of each non-flaky test
14

More details about the studied
TCP techniques in paper

Evaluating TCP techniques on LRTS

15

Evaluating TCP techniques on LRTS

• RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

15

Evaluating TCP techniques on LRTS

• RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

• RQ2: How do confounding test failures impact TCP effectiveness?
(1 confirmation and 2 new findings)

15

Evaluating TCP techniques on LRTS

• RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

• RQ2: How do confounding test failures impact TCP effectiveness?
(1 confirmation and 2 new findings)

• RQ3: How do TCP techniques perform in detecting the first failure
throughout CI history for each failed test? (1 new finding)

15

Evaluating TCP techniques on LRTS

• RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

• RQ2: How do confounding test failures impact TCP effectiveness?
(1 confirmation and 2 new findings)

• RQ3: How do TCP techniques perform in detecting the first failure
throughout CI history for each failed test? (1 new finding)

• RQ1 - LRTS-DeConf; RQ2 - LRTS-All; RQ3 - LRTS-FirstFail

15

RQ1: Effectiveness of TCP techniques

16

• Confirmed 8 and refuted 2 prior findings, e.g.,

Confirmations are colored green; refutations red; new findings purple

RQ1: Effectiveness of TCP techniques

16

• Confirmed 8 and refuted 2 prior findings, e.g.,
• Simpler TCPs (time-based, history-based) outperform

sophisticated ones (IR-based, ML/RL-based) [3, 9]

Confirmations are colored green; refutations red; new findings purple

RQ1: Effectiveness of TCP techniques

16

• Confirmed 8 and refuted 2 prior findings, e.g.,
• Simpler TCPs (time-based, history-based) outperform

sophisticated ones (IR-based, ML/RL-based) [3, 9]
• Cost-cognizant hybrids substantially improve basic TCPs [3]

• Prioritizing faster tests that failed recently is the best [3]

Confirmations are colored green; refutations red; new findings purple

RQ1: Effectiveness of TCP techniques

16

• Confirmed 8 and refuted 2 prior findings, e.g.,
• Simpler TCPs (time-based, history-based) outperform

sophisticated ones (IR-based, ML/RL-based) [3, 9]
• Cost-cognizant hybrids substantially improve basic TCPs [3]

• Prioritizing faster tests that failed recently is the best [3]

• IR-based TCP performed worse when test suites have more
failures or longer-running tests [3]

Confirmations are colored green; refutations red; new findings purple

RQ1: Effectiveness of TCP techniques

16

• Confirmed 8 and refuted 2 prior findings, e.g.,
• Simpler TCPs (time-based, history-based) outperform

sophisticated ones (IR-based, ML/RL-based) [3, 9]
• Cost-cognizant hybrids substantially improve basic TCPs [3]

• Prioritizing faster tests that failed recently is the best [3]

• IR-based TCP performed worse when test suites have more
failures or longer-running tests [3]

• Different configurations have little impact on the
effectiveness of IR-based techniques [3, 8]

Confirmations are colored green; refutations red; new findings purple

• CTF: failures of flaky tests and frequently failing tests

• CTF should NOT be prioritized over other failures

17

RQ2: Impact* of confounding test failures (CTF)

• CTF: failures of flaky tests and frequently failing tests

• CTF should NOT be prioritized over other failures

17

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over
non-CTFs that are true failures.

RQ2: Impact* of confounding test failures (CTF)

• CTF: failures of flaky tests and frequently failing tests

• CTF should NOT be prioritized over other failures

• Confirmed 1 prior finding and present 2 new findings,

17

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over
non-CTFs that are true failures.

RQ2: Impact* of confounding test failures (CTF)

• CTF: failures of flaky tests and frequently failing tests

• CTF should NOT be prioritized over other failures

• Confirmed 1 prior finding and present 2 new findings,

• History-based TCP are the most negatively impacted* by CTF [7],

but those favoring recent history are resilient to CTF

17

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over
non-CTFs that are true failures.

RQ2: Impact* of confounding test failures (CTF)

• CTF: failures of flaky tests and frequently failing tests

• CTF should NOT be prioritized over other failures

• Confirmed 1 prior finding and present 2 new findings,

• History-based TCP are the most negatively impacted* by CTF [7],

but those favoring recent history are resilient to CTF
• Time-based and change-aware (IR-based) TCP are the least

impacted by CTF

17

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over
non-CTFs that are true failures.

RQ2: Impact* of confounding test failures (CTF)

• First failure of a test: the first time a test failed in CI

• Goal: understand how TCP perform when most tests do
not fail

18

RQ3: TCP Effectiveness on finding first failures

• First failure of a test: the first time a test failed in CI

• Goal: understand how TCP perform when most tests do
not fail

• Presented 1 new finding, i.e.,

• Time-based and change-aware TCP are more effective
in finding first failures, then Random, then history-
based TCP

18

RQ3: TCP Effectiveness on finding first failures

Conclusions
• Dataset: An extensive dataset focused on recent (2020-2023) long-running

test suites (LRTS) that consists of 21K CI builds with 57K test-suite runs

from 10 open-source projects

• LRTS currently has 100K+ test-suite runs (an additional 43K+ test-suite

runs since this ISSTA paper was accepted)

• Extensive Study: Evaluated 59 previously proposed TCP techniques on LRTS

• Threat: Due to high cost, didn’t run generated test orders [ISSRE’24]

• Findings: Revisited 11 key findings from recent TCP studies, confirming 9 and

refuting 2 findings; presented 3 new findings

• Data/code release: QR code:

https://github.com/lrtsuser/LRTS
19

https://github.com/lrtsuser/LRTS

References
[1] Moritz Beller, Georgios Gousios, and Andy Zaidman. TravisTorrent: Synthesizing Travis CI and GitHub
for Full-Stack Research on Continuous Integration. In MSR (2017).

[2] Toni Mattis, Patrick Rein, Falco Dursch, and Robert Hirschfeld. RTPTorrent: An Open-source Dataset for
Evaluating Regression Test Prioritization. In MSR (2020).

[3] Qianyang Peng, August Shi, and Lingming Zhang. Empirically Revisiting and Enhancing IR-Based Test-
Case Prioritization. In ISSTA (2020).

[4] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono, and Stefano Russo.
Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration. In ICSE
(2020).

[5] Cong Pan and Michael Pradel. Continuous Test Suite Failure Prediction. In ISSTA (2021).

[6] Ahmadreza Saboor Yaraghi, Mojtaba Bagherzadeh, Nafiseh Kahani, and Lionel C Briand. Scalable and
Accurate Test Case Prioritization in Continuous Integration Contexts. In TSE (2022).

[7] Emad Fallahzadeh and Peter C Rigby. The Impact of Flaky Tests on Historical Test Prioritization on
Chrome. In ICSE-SEIP (2022).

[8] Ripon K Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E Perry. An Information Retrieval
Approach for Regression Test Prioritization Based on Program Changes. In ICSE (2021).

[9] Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. Empirically Evaluating Readily
Available Information for Regression Test Optimization in Continuous Integration. In ISSTA (2021).

Backup

CI Build CDFs

Evaluation Setup

All Findings

Results (RQ1)

Results (RQ1)

Results (RQ2 & RQ3)

	Slide 1: Revisiting Test-Case Prioritization on Long-Running Test Suites
	Slide 2: Regression testing for code changes
	Slide 3: Regression testing for code changes
	Slide 4: Regression testing for code changes
	Slide 5: Regression testing for code changes
	Slide 6: Regression testing for code changes
	Slide 7: Regression testing for code changes
	Slide 8: Regression testing for code changes
	Slide 9: Test-Case Prioritization (TCP)
	Slide 10: Test-Case Prioritization (TCP)
	Slide 11: Test-Case Prioritization (TCP)
	Slide 12: Test-Case Prioritization (TCP)
	Slide 13: How to prioritize tests?
	Slide 14: How to prioritize tests?
	Slide 15: How to prioritize tests?
	Slide 16: How to prioritize tests?
	Slide 17: How to prioritize tests?
	Slide 18: Information Retrieval-based TCP
	Slide 19: Information Retrieval-based TCP
	Slide 20: Information Retrieval-based TCP
	Slide 21: Information Retrieval-based TCP
	Slide 22: Information Retrieval-based TCP
	Slide 23: Learning-based TCP
	Slide 24: Learning-based TCP
	Slide 25: Learning-based TCP
	Slide 26: Learning-based TCP
	Slide 27: How to prioritize tests?
	Slide 28: Datasets are essential for TCP research
	Slide 29: Datasets are essential for TCP research
	Slide 30: Datasets are essential for TCP research
	Slide 31: Datasets are essential for TCP research
	Slide 32: Contributions
	Slide 33: LRTS Dataset
	Slide 34: LRTS Dataset
	Slide 35: LRTS Dataset
	Slide 36: LRTS Dataset
	Slide 37: LRTS Dataset
	Slide 38: LRTS Dataset
	Slide 39: LRTS Dataset
	Slide 40: LRTS Dataset
	Slide 41: LRTS Dataset
	Slide 42: LRTS Dataset
	Slide 43: LRTS Dataset
	Slide 44: LRTS Dataset
	Slide 45: LRTS Dataset
	Slide 46: LRTS Dataset
	Slide 47: Evaluation setup
	Slide 48: Evaluation setup
	Slide 49: Evaluation setup
	Slide 50: Evaluation setup
	Slide 51: Evaluation setup
	Slide 52: Evaluation setup
	Slide 53: Evaluation setup
	Slide 54: Evaluation setup
	Slide 55: Evaluation setup
	Slide 56: Evaluation setup
	Slide 57: Evaluation setup
	Slide 58: Evaluating TCP techniques on LRTS
	Slide 59: Evaluating TCP techniques on LRTS
	Slide 60: Evaluating TCP techniques on LRTS
	Slide 61: Evaluating TCP techniques on LRTS
	Slide 62: Evaluating TCP techniques on LRTS
	Slide 63: RQ1: Effectiveness of TCP techniques
	Slide 64: RQ1: Effectiveness of TCP techniques
	Slide 65: RQ1: Effectiveness of TCP techniques
	Slide 66: RQ1: Effectiveness of TCP techniques
	Slide 67: RQ1: Effectiveness of TCP techniques
	Slide 68: RQ2: Impact* of confounding test failures (CTF)
	Slide 69: RQ2: Impact* of confounding test failures (CTF)
	Slide 70: RQ2: Impact* of confounding test failures (CTF)
	Slide 71: RQ2: Impact* of confounding test failures (CTF)
	Slide 72: RQ2: Impact* of confounding test failures (CTF)
	Slide 73: RQ3: TCP Effectiveness on finding first failures
	Slide 74: RQ3: TCP Effectiveness on finding first failures
	Slide 75: Conclusions
	Slide 76: References
	Slide 77
	Slide 78: Backup
	Slide 79: CI Build CDFs
	Slide 80: Evaluation Setup
	Slide 81: All Findings
	Slide 82: Results (RQ1)
	Slide 83: Results (RQ1)
	Slide 84: Results (RQ2 & RQ3)

