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• Checking that code changes do not break working functionality

• Widely used in modern CI/CD environments
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Test-Case Prioritization (TCP)

• Reorder tests to expose potential faults sooner
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Information Retrieval-based TCP

• Information Retrieval (IR)
• Rank text documents based on the relevance to a query
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Information Retrieval-based TCP

• Information Retrieval (IR)
• Rank tests based on the relevance to code changes
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Learning-based TCP

• Learning-to-Rank (LTR):
• Use supervised learning algorithms

• Train on historical test runs to predict ranking of tests for future runs

• Ranking-to-Learn (RTL):
• Use reinforcement learning algorithms

• Continuously rank tests based on test states of the current run

• Receive feedback from the ranking to improve its policy for next run
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How to prioritize tests?

• Time-based TCP:
• Prioritize tests that run faster

• History-based TCP:
• Prioritize tests that have historically failed more frequently

• IR-based TCP:
• Prioritize tests that are more relevant to changes by textual similarity

• Learning-based TCP:
• Use ML algorithms to predict the ranking of tests

• Hybrid TCP:
• Combine heuristics from previous categories
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• Some from proprietary projects, e.g., test results of Google products 
• Outdated CI builds, e.g., >10-year-old builds in TravisTorrent [1]
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• Prior datasets for TCP are rather limited

• Consist of short-running test suites, e.g., runs for several minutes
• Some from proprietary projects, e.g., test results of Google products 
• Outdated CI builds, e.g., >10-year-old builds in TravisTorrent [1]

• TCP is most useful on long-running test suites
• More tests, more complex tests 
 → SAVE MORE TIME!
      → Harder to find and prioritize failing tests
• On the contrary, TCP provides little value on short-running test suites

• Will the same TCP techniques remain the most effective on 
long-running test suites?

9



Contributions
• Dataset: An extensive dataset focused on recent (2020-2023)

long-running test suites (LRTS) that consists of 21K CI
builds with 57K test-suite runs from 10 open-source projects

• LRTS currently has 100K+ test-suite runs (an additional 43K+ test-
suite runs since this ISSTA paper was accepted)

• Extensive Study: Evaluated 59 previously proposed TCP
techniques on LRTS

• Findings: Revisited 11 key findings from recent TCP studies, 
confirming 9 and refuting 2 findings; presented 3 new findings

• Data/code release: QR code:
https://github.com/lrtsuser/LRTS
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LRTS Dataset
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builds in public Jenkins CI servers
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TCP Dataset #Project #TSR Test Suite Run
Duration (hours)

RTPTorrent [2] 20 100K 0.17

Peng et al. [3] 123 3K 0.09

RT-CI [4] 6 3K < 0.01

Pan and Pradel [5] 242 15K 0.35

TCP-CI [6] 25 21K 0.27

Chrome [7] 1 50K 7.96

LRTS (Ours) 10 57K 6.50
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LRTS Dataset
• Recent: LRTS spans from 2020 to 2023 from 10 projects

• Long-running: Average test-suite run duration of 6.5 hours,
18x longer than prior datasets except Chrome [7]

• Large-scale: 21,255 unique CI builds from 10 projects, 57,437
test-suite runs and 30,118 (59%) had at least one failed test

• Diverse test failures: 75% of the failed tests failed < 8 times

• Scripts: We also released code to build and update LRTS

12
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• Evaluation Metrics:
•  Average Percentage Faults Detected (APFD):

• Average Percentage Faults Detected per Cost (APFDc)

• No direct mapping of test failures to faults:
• 𝐹𝐹𝑀𝑎𝑝𝑆: assumes all failures map to the same fault

• 𝐹𝐹𝑀𝑎𝑝𝑈: assumes each failure maps to a unique fault
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Evaluation setup
• Study 26 basic TCP techniques:

• 2 Time-based, 6 History-based, 6 IR-based, 5 LTR, 6 RTL

• Random as baseline

• Apply 2 cost-cognizant hybrid TCP approaches to the basic 
techniques to construct 33 hybrid techniques

• Cost-cognizant (CC): prioritize tests with a short execution time

• Cost-history-cognizant (CCH): prioritize tests that failed more often

• 3 LRTS versions:

• LRTS-All: Keeps all test failures

• LRTS-DeConf: Omits identified confounding test failures

• LRTS-FirstFail: Only keeps the first failure of each non-flaky test
14

More details about the studied
TCP techniques in paper
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Evaluating TCP techniques on LRTS

• RQ1: How do TCP techniques perform on long-running test suites
from recent builds? (8 confirmations and 2 refutations)

• RQ2: How do confounding test failures impact TCP effectiveness?
(1 confirmation and 2 new findings)

• RQ3: How do TCP techniques perform in detecting the first failure
throughout CI history for each failed test? (1 new finding)

• RQ1 - LRTS-DeConf; RQ2 - LRTS-All; RQ3 - LRTS-FirstFail
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• Confirmed 8 and refuted 2 prior findings, e.g.,
• Simpler TCPs (time-based, history-based) outperform 

sophisticated ones (IR-based, ML/RL-based) [3, 9]
• Cost-cognizant hybrids substantially improve basic TCPs [3]

• Prioritizing faster tests that failed recently is the best [3]

• IR-based TCP performed worse when test suites have more 
failures or longer-running tests [3]

• Different configurations have little impact on the 
effectiveness of IR-based techniques [3, 8]

Confirmations are colored green; refutations red; new findings purple
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• CTF: failures of flaky tests and frequently failing tests

• CTF should NOT be prioritized over other failures

• Confirmed 1 prior finding and present 2 new findings, 

• History-based TCP are the most negatively impacted* by CTF [7], 

but those favoring recent history are resilient to CTF
• Time-based and change-aware (IR-based) TCP are the least 

impacted by CTF

17

*A TCP is negatively impacted by CTFs if APFD(c) decreases because it prioritizes CTFs over 
non-CTFs that are true failures. 
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• First failure of a test: the first time a test failed in CI

• Goal: understand how TCP perform when most tests do 
not fail
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• First failure of a test: the first time a test failed in CI

• Goal: understand how TCP perform when most tests do 
not fail

• Presented 1 new finding, i.e.,

• Time-based and change-aware TCP are more effective 
in finding first failures, then Random, then history-
based TCP

18
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Conclusions
• Dataset: An extensive dataset focused on recent (2020-2023) long-running

test suites (LRTS) that consists of 21K CI builds with 57K test-suite runs

from 10 open-source projects

• LRTS currently has 100K+ test-suite runs (an additional 43K+ test-suite 

runs since this ISSTA paper was accepted) 

• Extensive Study: Evaluated 59 previously proposed TCP techniques on LRTS

• Threat: Due to high cost, didn’t run generated test orders [ISSRE’24]

• Findings: Revisited 11 key findings from recent TCP studies, confirming 9 and 

refuting 2 findings; presented 3 new findings

• Data/code release: QR code:

https://github.com/lrtsuser/LRTS
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