
Shuai Wang, Xinyu Lian, Qingyu Li, Darko Marinov, Tianyin Xu

FSE, Porto de Galinhas, Brazil
07/17/2024

Ctest4J: A Practical Configuration
Testing Framework for Java

1

CCF-1763788
CCF-1956374
CNS-2145295

Misconfiguration is one dominating root cause of
software failures

2

Configuration testing for config changes
• Ctest: test production configuration changes together with code [1]

• Key contribution: specify which Ctest uses which configuration parameters

3[1] Xudong Sun, et al. Testing Configuration Changes in Context to Prevent Production Failures. OSDI 2020

protected void doStart() {
 if (needed > max)

throw new IllegalStateException(String.format(
“Insufficient threads...”));

}

...

Production configuration change
- hbase.http.max.threads = 10
+ hbase.http.max.threads = 5

Source code

public void testGetMasterInfoPort() {...}
@Test

max = conf.getInt(“hbase.http.max.threads”);

Configuration test

Prior Ctest scripts were hard to use and inefficient.

Cumbersome: Hard to use & maintain Ctests
• Manual configuration API instrumentation to:
• Connect configuration under test to each Ctest
• Track configuration usage of each Ctest

• External configuration usage mapping files for each Ctests

4

public class Configuration {
 ...
 static {
 loadConfigurationFrom(“default.xml”);
 loadConfigurationFrom(“ctest.xml”); // Load Ctest configuration
 }

public String get(String name) {
...
LOG.warn("[CTEST][GET-API] " + ctestParam);

 }
}

Logs are parsed into external configuration
usage files for each individual Ctest

Inefficient: No parallel Ctest execution
• All Ctests read configuration changes from the same file

5

public class Configuration {
 ...
 static {
 addDefaultResource(“default.xml”);
 addDefaultResource(“ctest.xml”); // Load Ctest configuration
 }
}

ctest.xml

Production configuration change
- hbase.http.max.threads = 10
+ hbase.http.max.threads = 5

Ctest4J: Our new tool for Ctests
• Maintainability: Ctest4J provides source-code annotations to

make Ctests easy to maintain
• Automation: Ctest4J uses AspectJ to automate the configuration

API instrumentation
• Parallel Execution: Ctest4J supports running Ctests with

different configurations in parallel
• Generality: Ctest4J supports JUnit4, JUnit5, and TestNG; can be

easily extended to other Java testing frameworks

6

Ctest4J annotations
• Source-code annotations to store configuration usage information
• @CtestClass for class-level usage and @Ctest for method level usage
• Optional to maintain external usage mapping files

7

public void testGetMasterInfoPort() {...}
@Test

public void testGetMasterInfoPort() {...}
@Ctest({“hbase.http.max.threads”, ...})

• Ctest4J runner parses the annotations to connect used configuration
parameter values to Ctests

Ctest4J configuration connector
• Connect configurations to Ctest through configuration object
• Each Ctest has its own configuration identified by Ctest method name
• Different Ctests can be executed in parallel with different configurations

8

public Configuration () {
this(true); // Load default configuration
Ctest4J.connectProdConfig((name, value) -> set(name, value));

}

• AspectJ is used to automate configuration API instrumentations

Ctest4J Main Results
• Evaluated Ctest4J with 12 popular large, widely used open-source projects

• Can Ctest4J effectively execute Ctest?
• Speed up the Ctest execution by 3.4X on average over original Ctest scripts

• What is the overhead of running Ctest with Ctest4J?
• Take only 20 lines of code on average to enable Ctest across 12 Java projects
• Run only ~3% slower on average than a regular unit test

9

Ctest4J Main Results
• Evaluated Ctest4J with 12 popular large, widely used open-source projects

• Can Ctest4J effectively execute Ctest?
• Speed up the Ctest execution by 3.4X on average over original Ctest scripts

• What is the overhead of running Ctest with Ctest4J?
• Take only 20 lines of code on average to enable Ctest across 12 Java projects
• Run only ~3.0% slower on average than a regular unit test

10

Conclusion
• Ctest4J eases the effort to write, run, and maintain Ctests

• Transforming existing tests to Ctests is still challenging:
• How to generalize test assertions to only fail under misconfigurations

• Data/code release: https://github.com/xlab-uiuc/ctest4j

QR code:

11

