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ABSTRACT
We present Ctest4J, a practical configuration testing framework for
Java projects. Configuration testing is a recently proposed approach
for finding both misconfigurations and code bugs. Ctest4J addresses
the limitations of configuration testing scripts from prior work,
including lack of parallel test execution, poor maintainability due
to external dependencies, limited integration with modern build
systems, and the need for manual instrumentation of configuration
API. Ctest4J is a unified framework to write, maintain, and execute
configuration tests (Ctests) and integrates with multiple testing
frameworks (JUnit4, JUnit5, and TestNG) and build systems (Maven
and Gradle). With Ctest4J, Ctests can be maintained similarly to
regular unit tests. Ctest4J also provides a utility for automated
code instrumentation for common configuration API. We evaluate
Ctest4J on 12 open-source projects. We show that Ctest4J effectively
enables configuration testing for these projects and speeds up Ctest
execution by 3.4X compared to prior scripts. Ctest4J can be found
at https://github.com/xlab-uiuc/ctest4j.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Configuration testing [10, 14] is a recently proposed approach for
rigorously testing software configurations, similar to how software
code is tested today. The keymotivation is to test production system
configurations before deploying them. Configuration testing con-
nects configurations to software tests so that configuration changes
can be tested in the context of code affected by the changes. A
configuration test (Ctest) is a test that takes as input a system con-
figuration and checks the configuration with the code. In many
projects, configurations are key-value pairs that map configuration
parameters to their values. Prior work [10] has shown that config-
uration testing outperforms previous approaches [1, 11, 16–18] for
detecting failure-inducing configurations, including sophisticated
misconfigurations and valid configurations that trigger dormant
software bugs. Regression test selection [10, 12] and test case pri-
oritization [2] have been developed to make configuration testing
more efficient for continuous delivery and deployment.

However, despite the active research on configuration testing
from several groups [2, 4, 6, 10, 12, 14], including configuration
tests for fuzzing [4] and unsafe parameter detection [6], there is
no practical, systematic framework for configuration testing. Prior
research developed ad hoc scripts [7], which are very limited and
deficient for practical use cases—they do not support parallel test
execution, have poor maintainability due to external dependencies
(requiring a file that specifies the mapping between configuration
parameters and the tests that use them), work only for JUnit4 and
Maven, and require manual instrumentation of the configuration
API. Such deficient support makes it harder to adopt configuration
testing in practice and even hampers research. For example, all
prior papers [2, 4, 10, 12, 14] evaluated configuration testing on a
fixed set of five or six open-source projects.

We present Ctest4J, a practical configuration testing framework
for Java projects. Ctest4J provides new annotations so that develop-
ers can write and maintain Ctests similarly to regular unit tests. It
connects the configuration values under test with the correspond-
ing Ctests. Ctest4J also provides automated code instrumentation
for common configuration API. The instrumentation is required to
enable Ctests. Ctest4J supports the most popular Java-based test
frameworks (JUnit4, JUnit5, TestNG) and build systems (Maven,
Gradle). In sum, Ctest4J provides the following features:
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• Parallel test execution. Ctest4J supports running Ctests with
different configurations in parallel, addressing the limitation of
sequential-only execution of prior Ctest scripts (due to a design
limitation of sharing static configuration objects). Also, Ctest4J
incurs a low runtime overhead; a Ctest runs only ∼3% slower on
average than a regular unit test.

• Maintainability. Ctest4J provides source-code annotations to
make Ctests easy tomaintain. Ctest4J allows developers to specify
the mapping between Ctest and configuration parameters as
annotations inside the test code, without creating a dependency
on separate, external files. For backward compatibility, Ctest4J
supports original mapping files for projects that use prior scripts.

• Automation. Configuration API instrumentation is a necessary
step to enable Ctests. Ctest4J uses AspectJ to automate the instru-
mentation, thereby easing the adoption of configuration testing
for existing projects. With our automation, enabling Ctests takes
only 20 lines of code on average across 12 Java projects.

Ctest4J is available at https://github.com/xlab-uiuc/ctest4j and re-
leased in the Maven Central Repository.

2 USAGE
We present a high-level overview of configuration testing with
Ctest4J. More details are in the code documentation on GitHub.

2.1 Writing Ctests
Ctest4J provides two source-code annotations for developers to
mark Ctest classes and methods:
• @CtestClass marks that a class is a Ctest class;
• @Ctest marks that a method is a Ctest method;
These annotations specify the configuration parameters of the cor-
responding Ctest(s) in a class or a method. Making the configuration
parameter usage explicit (1) substantially aids debugging (as devel-
opers gain insights into which configuration parameters are utilized
by a Ctest), (2) enhances the capabilities of test selection [10, 12] and
prioritization [2], and (3) enables more efficient Ctest fuzzing [4].

Both annotations can specify configuration parameters used
by the Ctest(s) as a list of parameters and a regular expression to
match the parameters. For backward compatibility with the original
Ctest scripts [7], @CtestClass can also specify a file that contains
the mapping between configuration parameters and Ctest methods.
Lists, regexes, and files can be provided together, and Ctest4J unions
the mappings into one final mapping. Besides these annotations,
Ctest4J’s Ctest runner needs to be specified within the Ctest class.
For example, Ctest4J’s CtestJUnitRunner is added through the usual
@RunWith annotation in JUnit4.

Figure 1 is a simplified Ctest example from Hadoop YARN. We
annotate the existing class TestFSDownload with the Ctest4J’s run-
ner CtestJUnitRunner (line 1) and @CtestClass (line 2), and the
test method testDownload with @Ctest (lines 8-10). @CtestClass
specifies the class-level configuration parameter used by all the
Ctest methods in the class. The class-level configuration param-
eters mostly come from the test setup and teardown executions.
In this example, the method getRecordFactory() (line 6) uses the
parameter yarn.ipc.record.factory.class, making it a class-level
configuration parameter. @Ctest specifies the method-level con-
figuration parameters used in the execution of the Ctest method

1 @RunWith(CtestJUnitRunner.class)

2 @CtestClass ({"yarn.ipc.record.factory.class"})

3 public class TestFSDownload {

4 private Configuration conf = new Configuration ();

5 static final RecordFactory recordFactory =

6 RecordFactoryProvider.getRecordFactory(null);

7
8 @Ctest(regex="fs.(client.resolve.remote.symlinks|" +

9 "permissions.umask -mode|local.block.size|" +

10 "AbstractFileSystem.file.impl)")

11 public void testDownload () {

12 // Create FileContext with parameters in @Ctest

13 FileContext files =

14 FileContext.getLocalFSFileContext(conf);

15 ...

16 // Start downloading

17 FSDownload fsd = new FSDownload(files , ...)

18 Path path = fsd.download(...);

19 ...

20 // Check whether the download is done

21 assertTrue(path.isDone ())

22 ... // Check other properties of the downloaded file

23 }

24 }

Figure 1: A Ctest in YARN with Ctest4J. The configuration
parameters in the code snippet will be instantiated by values
from the configuration under test (not shown in the figure).

body. In this example, testDownload uses four method-level con-
figuration parameters, specified for illustration through a regular
expression. These parameters are used by various methods, e.g.,
createFileSystem() method invoked by getLocalFSFileContext()

uses local.block.size. During Ctest execution, Ctest4J instantiates
every configuration parameter used by each Ctest method with the
configuration under test, e.g., a production configuration.

2.2 Configuration API Instrumentation
To enable Ctests in a Java project, developers need to instrument the
configuration API with Ctest4J so that Ctest4J can instantiate Ctests
with the configuration under test at runtime. Ctest4J also provides
APIs to track the usage of configuration parameters during the
execution of Ctests; the tracking is important for debugging, main-
tenance of the input configuration parameters for each Ctest, and
adequacy measurement (e.g., coverage of configuration parameters
of a Ctest suite).

Ctest4J focuses on common configuration API patterns in Java
projects, many of which use a unified configuration class with two
basic API abstractions, configuration GET and SET APIs [5, 8–
10, 13, 15, 19, 20]. The GET APIs of the form “<T> get(String

parameter)” take a parameter name and return a value; SET APIs
of the form “void set(String parameter, <T> value)” set the
value of the given parameter with the input value. Configura-
tion APIs built on top of the common java.util.Properties and
org.apache.commons.configuration all follow such a pattern.

2.2.1 Instrumenting Configuration API. Without Ctest4J, all test
executions would use only the default configuration provided with
the project. Ctest4J modifies the execution so that tests run with the
configuration under test (e.g., a production configuration). Ctest4J
instruments the configuration API with connectProdConfig, which
connects the configuration under test to the configuration ob-
jects used by the Ctests. The connectProdConfig method is a static
method that takes the configuration SET API as input; typically,
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connectProdConfig is added to the constructor of the configuration
class to initialize the configuration object with the configuration
under test. The following snippet shows how to instrument the
configuration API of Apache Hadoop YARN.

1 public Configuration () {

2 this(true);

3 + Ctest4J.connectProdConfig(

4 + (name , value) -> set(name , (String) value));

5 }

For projects that do not have a unified configuration class where
Ctest4J can modify the SET API, Ctest4J supports a lazy instrumen-
tation mode that modifies the configuration GET API to use the
configuration under test.

2.2.2 Tracking Configuration Parameters. Ctest4J also provides an
API (a static markParamAsUsed method) to track the usage of config-
uration parameter values during the execution of Ctests. Ctest4J
calls markParamAsUsed upon the invocation of a configuration GET
API, as shown in the following snippet (from Hadoop).

1 public String get(String name) {

2 + Ctest4J.markParamAsUsed(name);

3 String [] names = handleDeprecation(deprecationContext.get

(), name);

4 String result = null;

5 for(String n : names) {

6 + Ctest4J.markParamAsUsed(n);

7 result = substituteVars(getProps ().getProperty(n));

8 }

9 return result;

10 }

For projects that have multiple different configuration GET APIs,
markParamAsUsed is expected to be placed for every API to ensure
the completeness of tracking.

Ctest4J provides an AspectJ [3] based utility to instrument the
configuration API (by specifying the fully qualified name of the
APIs), if source-code changes are not preferred.

2.3 Running Ctests
Running a Ctest is similar to running a regular unit test. For example,
with Maven, Ctests can be run with Maven Surefire (mvn test).
Ctest4J provides three modes to run Ctests:

• debug: run the Ctest with the default configuration and check
whether all the required configuration parameters are used dur-
ing the test execution. This mode helps in developing and debug-
ging Ctests;

• prod: run the Ctest with the configuration under test;
• default: run the Ctest with the configuration under test and
check whether all the required configuration parameters are
used during the test execution.

Ctest4J supports running Ctests in parallel with different con-
figuration files. Ctest4J also supports input configuration through
command-line arguments. If no configuration file or command-
line argument is specified, Ctest4J runs the Ctest with the default
configuration; in this case, a Ctest falls back into a regular unit test.

Ctest4J implements parameter-aware Ctest selection [10]. We
plan to develop advanced test selection algorithms such as uRTS [12]
and test case prioritization algorithms [2] in Ctest4J.

Annotation
Library

Parameter
Tracker

ConfUT
Connector

Ctest RunnerC
te
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4J

Ctest Source 
Code

Mapping Files
(Optional)

Configuration
Under Test

Figure 2: Overview of Ctest4J.

3 IMPLEMENTATION
The current Ctest4J implementation has ∼5000 lines of Java code.
Ctest4J takes three inputs: (1) the Ctest code, (2) the configuration
under test (ConfUT), and (3) optionally a mapping file between
the parameters and the Ctest that uses them (the original Ctest
scripts [7] required such files). Ctest4J processes the test annotations
(with explicit parameter list or the file name) and instantiates the
execution of Ctests. Figure 2 shows the four main components of
Ctest4J. We next briefly describe their implementations.

3.1 Annotation Library
The annotation library processes the annotations in the test code.
The annotations are conceptually similar to the @Test annotation for
regular unit tests. @CtestClass and @Ctest mark that the annotated
class or method, respectively, is a Ctest. As described in §2.1, both
annotations specify the configuration parameters of the Ctest using
a list or a regex. To get a precise set of configuration parameters
from a regex, Ctest4J does not accept patterns with match-any
operators ".*" or ".+", which could match too many parameters.

@CtestClass can also specify configuration parameters from a
mapping file in JSON that has two fields: class-level parameters (a
list of configuration parameters required by all Ctests in the class)
and method-level parameters (a map between Ctest method names
and configuration parameters required by the method).

3.2 ConfUT Connector
The configuration connector connects the ConfUT with Ctests, ef-
fectively to run each test with the configuration under test (rather
than the default configuration). The original Ctest scripts [7] im-
plemented the connector by writing the ConfUT to a dedicated
configuration file and changing the code for the initialization of the
configuration object to read the dedicated file and instantiate the
Ctest for execution. However, the dedicated file was shared among
all Ctests, and Ctests could not run concurrently with different con-
figurations. As different Ctests may be suitable for testing different
scenarios, some projects (e.g., HDFS) have various configuration
files (e.g., in test/resources) for different tests.

Ctest4J’s configuration connector directly writes the ConfUT
into the configuration object via the configuration SET APIs, with
no dedicated configuration file. For each Ctest run, it creates a map
with each configuration parameter and its value from the ConfUT.
To create configuration objects during Ctests run, the instrumented
configuration API invokes the Ctest4J’s connectProdConfigmethod.
The connector uses the SET API to instantiate each configuration
parameter with the corresponding value. The design enables Ctest4J
to support parallel execution of Ctests with distinct configurations.
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3.3 Parameter Tracker
The parameter tracker monitors the usage of configuration parame-
ters during Ctests runs. For a given Ctest class, the tracker manages
two levels of parameter usage list: (1) class-level list records the
configuration parameters used by all Ctest methods within the class,
including the Before and After methods; and (2) method-level list
records the configuration parameters used by each Ctest method.
Invocations of the instrumented configuration GET APIs call the
tracker. To record the parameter in the class- and method-level
lists, the tracker distinguishes whether the test execution is in the
shared, class-level setup and teardown (BeforeClass, Before, After,
and AfterClass methods) or in the method-level body execution.

3.4 Ctest Runner
The Ctest4J runner launches the Ctests using the ConfUT connector
and the parameter tracker. For each test class, the runner first checks
if the class is annotatedwith @CtestClass. If not, the runner executes
the test as a regular unit test but issues a warning about the missing
Ctest annotation. Otherwise, the Ctest4J runner executes the test
class as a Ctest and proceeds to extract the required configurations
for both the Ctest class and its methods from the annotations.

For each Ctest class, the runner creates a new connector and
a new tracker. The isolation is important, as it ensures that the
execution of one Ctest class does not interfere with the others.

The runner fails Ctests under any of the following conditions:
• missing parameter usage: the Ctest fails if the tracker identifies a
required parameter that was not used during the Ctest run;

• exceptions or errors: the Ctest fails if it encounters an exception
or error during execution (as for a regular unit test);

• timeout: the Ctest fails if its execution fails to finish within a
specified timeout (as for a regular unit test).

3.5 Integration with Testing Frameworks
We integrated Ctest4J with JUnit4, JUnit5, and TestNG. To support
JUnit4, we implement the Ctest runner as a custom JUnit4 run-
ner that extends the BlockJUnit4ClassRunner class and implements
the CtestRunner interface. We integrated Ctest4J with JUnit5 as a
JUnit5 extension and with TestNG as a TestNG listener. To inte-
grate with a new testing framework, one needs to implement the
CtestRunner interface, which involves invoking the connector and
tracker methods in the target framework’s runner or listener.

4 EVALUATION
Weevaluate Ctest4J using 12 open-source Java projects, including all
five projects used in prior Ctest work [2, 4, 10, 12] (Alluxio, HBase,
HCommon, HDFS, ZooKeeper) and seven new projects (Figure 3).
These projects use different testing frameworks (eight JUnit4, three
JUnit5, one TestNG) and different build systems (ten Maven, two
Gradle). We report our experience of enabling Ctests using Ctest4J
for the 12 projects and the performance of Ctest4J.

4.1 Enabling Ctests
We enabled Ctests for 12 mature, widely used Java projects using
Ctest4J. The main effort is to understand each project’s configura-
tion API to instrument the configuration API (see §2.2). It took us
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Figure 3: Execution time of running Ctests with Ctest4J, the
Ctest scripts [7] (OldScripts), and the vanilla runner such as
JUnit4 (VanillaRunner), normalized by VanillaRunner.

on average around one hour to find the correct configuration API
for each project. We were able to use our Ctest4J’s AspectJ utility
to instrument the configuration API. Note that no paper author
is a developer on any evaluated project, so we expect developers
more familiar with the configuration API of their projects to add
Ctest4J’s instrumentation even faster. With the instrumentation in
place, we transform existing tests that use configuration parameters
into Ctests following the original approach [10]. We write scripts
to automatically add the Ctest4J annotations in the Ctest code.

4.2 Performance
We measure the Ctest running time using Ctest4J and compare it
with the original Ctest scripts [7]. We also measure the overhead of
Ctest4J by comparing the running time with and without Ctest4J
(using default configuration). Note that we only use the original
scripts to run ten projects because the scripts do not support Gradle.
We use the default parallelism configured in the projects. Ctest4J
supports parallel execution, not requiring tests to run sequentially.

Figure 3 shows that Ctest4J can speed up the Ctest execution by
up to 41.3X times (3.4X on average), compared to the original Ctest
scripts. The speedup mostly comes from the parallel execution
of Ctest4J, while the original scripts need to run Ctests one by
one. Therefore, for projects that configure high parallelism for test
execution (e.g., Alluxio, Camel, and Flink), the speedup is significant;
for projects that run tests sequentially, the difference is smaller.

The overhead of Ctest4J is negligible. It mainly comes from
the configuration usage tracking and additional checking logic in
Ctest4J that checks whether all the required parameters are used
during test execution. In Figure 3, the execution time of Ctest4J
compared with VanillaRunner is up to 1.27X and 1.03X on average.

5 CONCLUSION
We present Ctest4J, a practical configuration testing framework
for Java. Ctest4J can help Java projects enable configuration test-
ing with modest manual effort and low runtime overhead. Ctest4J
provides direct support for writing and maintaining configuration
tests. We aim to broaden configuration testing research and reduce
the barrier to adopting configuration testing in practice.
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